scispace - formally typeset
Search or ask a question

Showing papers in "Optics Express in 2018"


Journal ArticleDOI
TL;DR: Focusing on the optical transport and switching layer, aspects of large-scale spatial multiplexing, massive opto-electronic arrays and holistic optics-electronics-DSP integration, as well as optical node architectures for switching and multiplexed of spatial and spectral superchannels are covered.
Abstract: Celebrating the 20th anniversary of Optics Express, this paper reviews the evolution of optical fiber communication systems, and through a look at the previous 20 years attempts to extrapolate fiber-optic technology needs and potential solution paths over the coming 20 years. Well aware that 20-year extrapolations are inherently associated with great uncertainties, we still hope that taking a significantly longer-term view than most texts in this field will provide the reader with a broader perspective and will encourage the much needed out-of-the-box thinking to solve the very significant technology scaling problems ahead of us. Focusing on the optical transport and switching layer, we cover aspects of large-scale spatial multiplexing, massive opto-electronic arrays and holistic optics-electronics-DSP integration, as well as optical node architectures for switching and multiplexing of spatial and spectral superchannels.

498 citations


Journal ArticleDOI
TL;DR: Some of the compelling reasons that one may wish to form images in the THz range are discussed, in order to provide a perspective of how far the field has come since the early demonstrations of the mid-1990's.
Abstract: The birth of terahertz imaging approximately coincides with the birth of the journal Optics Express. The 20th anniversary of the journal is therefore an opportune moment to consider the state of progress in the field of terahertz imaging. This article discusses some of the compelling reasons that one may wish to form images in the THz range, in order to provide a perspective of how far the field has come since the early demonstrations of the mid-1990’s. It then focuses on a few of the more prominent frontiers of current research, highlighting their impacts on both fundamental science and applications.

446 citations


Journal ArticleDOI
TL;DR: This work demonstrates monolithically integrated LN electro-optic modulators that are significantly smaller and more efficient than traditional bulk LN devices, while preserving LN's excellent material properties, and enables dense integration of high-performance active components.
Abstract: Since the emergence of optical fiber communications, lithium niobate (LN) has been the material of choice for electro-optic modulators, featuring high data bandwidth and excellent signal fidelity. Conventional LN modulators however are bulky, expensive and power hungry, and cannot meet the growing demand in modern optical data links. Chip-scale, highly integrated, LN modulators could offer solutions to this problem, yet the fabrication of low-loss devices in LN thin films has been challenging. Here we overcome this hurdle and demonstrate monolithically integrated LN electro-optic modulators that are significantly smaller and more efficient than traditional bulk LN devices, while preserving LN’s excellent material properties. Our compact LN electro-optic platform consists of low-loss nanoscale LN waveguides, micro-ring resonators and miniaturized Mach-Zehnder interferometers, fabricated by directly shaping LN thin films into sub-wavelength structures. The efficient confinement of both optical and microwave fields at the nanoscale dramatically improves the device performances featuring a half-wave electro-optic modulation efficiency of 1.8 V∙cm while operating at data rates up to 40 Gbps. Our monolithic LN nanophotonic platform enables dense integration of high-performance active components, opening new avenues for future high-speed, low power and cost-effective communication networks.

371 citations


Journal ArticleDOI
TL;DR: In this article, the authors review the physics and various manifestations of the generalized Kerker effect, including the progress in the emerging field of meta-optics that focuses on interferences of electromagnetic multipoles of different orders and origins.
Abstract: The original Kerker effect was introduced for a hypothetical magnetic sphere, and initially it did not attract much attention due to a lack of magnetic materials required. Rejuvenated by the recent explosive development of the field of metamaterials and especially its core concept of optically-induced artificial magnetism, the Kerker effect has gained an unprecedented impetus and rapidly pervaded different branches of nanophotonics. At the same time, the concept behind the effect itself has also been significantly expanded and generalized. Here we review the physics and various manifestations of the generalized Kerker effects, including the progress in the emerging field of meta-optics that focuses on interferences of electromagnetic multipoles of different orders and origins. We discuss not only the scattering by individual particles and particle clusters, but also the manipulation of reflection, transmission, diffraction, and absorption for metalattices and metasurfaces, revealing how various optical phenomena observed recently are all ubiquitously related to the Kerker’s concept.

293 citations


Journal ArticleDOI
TL;DR: These findings unambiguously imply that apart from its fantastic electric and thermal properties, few-layer bismuthene may also possess attractive optoelectronic properties for nonlinear photonics, such as mode-lockers, Q-switchers, optical modulators and so on.
Abstract: Few-layer bismuthene is an emerging two-dimensional material in the fields of physics, chemistry, and material science. However, its nonlinear optical property and the related photonics device have been seldom studied so far. Here, we demonstrate a sub-200 fs soliton mode-locked erbium-doped fiber laser (EDFL) using a microfiber-based bismuthene saturable absorber for the first time, to the best of our knowledge. The bismuthene nanosheets are synthesized by the sonochemical exfoliation method and transferred onto the taper region of a microfiber by the optical deposition method. Stable soliton pulses centered at 1561 nm with the shortest pulse duration of about 193 fs were obtained. Our findings unambiguously imply that apart from its fantastic electric and thermal properties, few-layer bismuthene may also possess attractive optoelectronic properties for nonlinear photonics, such as mode-lockers, Q-switchers, optical modulators and so on.

278 citations


Journal ArticleDOI
TL;DR: The proposed broadband metamaterial absorber shows a promising prospect in applications such as solar cell, infrared detection, and imaging and the use of a thin titanium cap and an aluminum film instead of noble metals has the potential to reduce production cost in applications.
Abstract: We propose a design of an ultra-broadband absorber based on a thin metamaterial nanostructure composed of a periodic array of titanium-silica (Ti-SiO2) cubes and an aluminum (Al) bottom film. The proposed structure can achieve nearly perfect absorption with an average absorbance of 97% spanning a broad range from visible to near-infrared (i.e., from 354 nm to 1066 nm), showing a 90% absorption bandwidth over 712 nm, and the peak absorption is up to 99.8%. The excitation of superior surface plasmon resonance combined with the resonance induced by the metal-insulator-metal Fabry-Perot (FP) cavity leads to this broadband perfect absorption. The polarization and angle insensitivity is demonstrated by analyzing the absorption performance with oblique incidences for both TE- and TM-polarized waves. In addition, we discuss the impact of various metal materials and geometry structure on absorption performance in detail. The proposed broadband metamaterial absorber shows a promising prospect in applications such as solar cell, infrared detection, and imaging. Moreover, the use of a thin titanium cap and an aluminum film instead of noble metals has the potential to reduce production cost in applications.

240 citations


Journal ArticleDOI
Wei Li1, Shanhui Fan1
TL;DR: Recent developments of nanophotonic control of thermal radiation are reviewed, and some exciting energy application opportunities, such as daytime radiative cooling, thermal textile, and thermophotovoltaic systems that are enabled by nanophOTonic structures are highlighted.
Abstract: The ability to control thermal radiation is of fundamental importance for a wide range of applications. Nanophotonic structures, where at least one of the structural features are at a wavelength or sub-wavelength scale, can have thermal radiation properties that are drastically different from conventional thermal emitters, and offer exciting opportunities for energy applications. Here we review recent developments of nanophotonic control of thermal radiation, and highlight some exciting energy application opportunities, such as daytime radiative cooling, thermal textile, and thermophotovoltaic systems that are enabled by nanophotonic structures.

236 citations


Journal ArticleDOI
TL;DR: This hybrid Si-LN MZM achieves beyond 106 GHz 3-dB electrical modulation bandwidth, the highest of any silicon photonic or lithium niobate (phase) modulator.
Abstract: We demonstrate an ultra-high-bandwidth Mach-Zehnder electro-optic modulator (EOM), based on foundry-fabricated silicon (Si) photonics, made using conventional lithography and wafer-scale fabrication, oxide-bonded at 200C to a lithium niobate (LN) thin film. Our design integrates silicon photonics light input/output and optical components, such as directional couplers and low-radius bends. No etching or patterning of the thin film LN is required. This hybrid Si-LN MZM achieves beyond 106 GHz 3-dB electrical modulation bandwidth, the highest of any silicon photonic or lithium niobate (phase) modulator.

223 citations


Journal ArticleDOI
TL;DR: An active absorption device is proposed based on vanadium dioxide metamaterials that may have tunable spectral applications in sensor, detector, and thermophotovoltaic device working at terahertz frequency bands.
Abstract: An active absorption device is proposed based on vanadium dioxide metamaterials. By controlling the conductivity of vanadium dioxide, resonant absorbers are designed to work at wide range of terahertz frequencies. Numerical results show that a broadband terahertz absorber with nearly 100% absorptance can be achieved, and its normalized bandwidth of 90% absorptance is 60% under normal incidence for both transverse-electric and transverse-magnetic polarizations when the conductivity of vanadium dioxide is equal to 2000 Ω−1cm−1. Absorptance at peak frequencies can be continuously tuned from 30% to 100% by changing the conductivity from 10 Ω−1cm−1 to 2000 Ω−1cm−1. Absorptance spectra analysis shows a clear independence of polarization and incident angle. The presented results may have tunable spectral applications in sensor, detector, and thermophotovoltaic device working at terahertz frequency bands.

221 citations


Journal ArticleDOI
TL;DR: The state-of-the-art fabrication methods and surveying their cutting-edge applications of the metasurfaces are reviewed.
Abstract: The research and development of optical metasurfaces has been primarily driven by the curiosity for novel optical phenomena that are unattainable from materials that exist in nature and by the desire for miniaturization of optical devices. Metasurfaces constructed of artificial patterns of subwavelength depth make it possible to achieve flat, ultrathin optical devices of high performance. A wide variety of fabrication techniques have been developed to explore their unconventional functionalities which in many ways have revolutionized the means with which we control and manipulate electromagnetic waves. The relevant research community could benefit from an overview on recent progress in the fabrication and applications of the metasurfaces. This review article is intended to serve that purpose by reviewing the state-of-the-art fabrication methods and surveying their cutting-edge applications.

218 citations


Journal ArticleDOI
TL;DR: The proposed method provides an efficient approach to control the radius of vortex beam carrying OAM mode in microwave wireless applications for medium-short range distance.
Abstract: In this paper, ultra-thin metalenses are proposed to generate converging and non-diffractive vortex beam carrying orbital angular momentum (OAM) in microwave region. Phase changes are introduced to the transmission cross-polarized wave by tailoring spatial orientation of Pancharatnam-Berry phase unit cell. Based on the superposition of phase profile of spiral phase plate and that of a converging lens or an axicon, vortex beam carrying OAM mode generated by the metalens can also exhibit characteristics of a focusing beam or a Bessel beam. Measured field intensities and phase distributions at microwave frequencies verify the theoretical design procedure. The proposed method provides an efficient approach to control the radius of vortex beam carrying OAM mode in microwave wireless applications for medium-short range distance.

Journal ArticleDOI
TL;DR: In this paper, a conditional generative adversarial network (cGAN) was proposed to reconstruct high-SBP dynamic cell videos by a CNN trained on the first FPM dataset captured at the beginning of a time-series experiment.
Abstract: Convolutional neural networks (CNNs) have gained tremendous success in solving complex inverse problems. The aim of this work is to develop a novel CNN framework to reconstruct video sequences of dynamic live cells captured using a computational microscopy technique, Fourier ptychographic microscopy (FPM). The unique feature of the FPM is its capability to reconstruct images with both wide field-of-view (FOV) and high resolution, i.e. a large space-bandwidth-product (SBP), by taking a series of low resolution intensity images. For live cell imaging, a single FPM frame contains thousands of cell samples with different morphological features. Our idea is to fully exploit the statistical information provided by these large spatial ensembles so as to make predictions in a sequential measurement, without using any additional temporal dataset. Specifically, we show that it is possible to reconstruct high-SBP dynamic cell videos by a CNN trained only on the first FPM dataset captured at the beginning of a time-series experiment. Our CNN approach reconstructs a 12800×10800 pixel phase image using only ∼25 seconds, a 50× speedup compared to the model-based FPM algorithm. In addition, the CNN further reduces the required number of images in each time frame by ∼ 6×. Overall, this significantly improves the imaging throughput by reducing both the acquisition and computational times. The proposed CNN is based on the conditional generative adversarial network (cGAN) framework. We further propose a mixed loss function that combines the standard image domain loss and a weighted Fourier domain loss, which leads to improved reconstruction of the high frequency information. Additionally, we also exploit transfer learning so that our pre-trained CNN can be further optimized to image other cell types. Our technique demonstrates a promising deep learning approach to continuously monitor large live-cell populations over an extended time and gather useful spatial and temporal information with sub-cellular resolution.

Journal ArticleDOI
TL;DR: A SeaWiFS chlorophyll-a validation data set is used to demonstrate a framework for satellite data product assessment and a multi-metric and user-dependent approach that can be applied within science, modeling, and resource management communities is recommended.
Abstract: Performance assessment of ocean color satellite data has generally relied on statistical metrics chosen for their common usage and the rationale for selecting certain metrics is infrequently explained. Commonly reported statistics based on mean squared errors, such as the coefficient of determination (r2), root mean square error, and regression slopes, are most appropriate for Gaussian distributions without outliers and, therefore, are often not ideal for ocean color algorithm performance assessment, which is often limited by sample availability. In contrast, metrics based on simple deviations, such as bias and mean absolute error, as well as pair-wise comparisons, often provide more robust and straightforward quantities for evaluating ocean color algorithms with non-Gaussian distributions and outliers. This study uses a SeaWiFS chlorophyll-a validation data set to demonstrate a framework for satellite data product assessment and recommends a multi-metric and user-dependent approach that can be applied within science, modeling, and resource management communities.

Journal ArticleDOI
TL;DR: The characteristics of a single D-shape PCF-SPR sensor with the same structural parameters are compared with those of the dual PCFs sensor and the latter has distinct advantages concerning the spectral sensitivity, resolution, amplitude sensitivity, and figure of merits (FOM).
Abstract: Symmetrical dual D-shape photonic crystal fibers (PCFs) for surface plasmon resonance (SPR) sensing are designed and analyzed by the finite element method (FEM). The performance of the sensor is remarkably enhanced by the directional power coupling between the two fibers. We study the influence of the structural parameters on the performance of the sensor as well as the relationship between the resonance wavelengths and analyze refractive indexes between 1.36 and 1.41. An average spectral sensitivity of 14660 nm/RIU can be achieved in this sensing range and the corresponding refractive index resolution is 6.82 × 10-6 RIU. The characteristics of a single D-shape PCF-SPR sensor with the same structural parameters are compared with those of the dual PCFs sensor and the latter has distinct advantages concerning the spectral sensitivity, resolution, amplitude sensitivity, and figure of merits (FOM).

Journal ArticleDOI
TL;DR: The results from ALD sidewall passivation revealed that the size-dependent influences on peak EQE can be minimized by proper sidewall treatment, and the importance of sidewall passedivation was demonstrated by comparing leakage current and external quantum efficiency (EQE).
Abstract: Optoelectronic effects of sidewall passivation on micro-sized light-emitting diodes (µLEDs) using atomic-layer deposition (ALD) were investigated. Moreover, significant enhancements of the optical and electrical effects by using ALD were compared with conventional sidewall passivation method, namely plasma-enhanced chemical vapor deposition (PECVD). ALD yielded uniform light emission and the lowest amount of leakage current for all µLED sizes. The importance of sidewall passivation was also demonstrated by comparing leakage current and external quantum efficiency (EQE). The peak EQEs of 20 × 20 µm2 µLEDs with ALD sidewall passivation and without sidewall passivation were 33% and 24%, respectively. The results from ALD sidewall passivation revealed that the size-dependent influences on peak EQE can be minimized by proper sidewall treatment.

Journal ArticleDOI
TL;DR: In this paper, the integration of QKD with a commercial backbone network of 3.6 Tbps classical data at 21 dBm launch power over 66 km fiber is presented.
Abstract: Quantum key distribution (QKD) provides information-theoretic security based on the laws of quantum mechanics. The desire to reduce costs and increase robustness in real-world applications has motivated the study of coexistence between QKD and intense classical data traffic in a single fiber. Previous works on coexistence in metropolitan areas have used wavelength-division multiplexing, however, coexistence in backbone fiber networks remains a great experimental challenge, as Tbps data of up to 20 dBm optical power is transferred, and much more noise is generated for QKD. Here we present for the first time, to the best of our knowledge, the integration of QKD with a commercial backbone network of 3.6 Tbps classical data at 21 dBm launch power over 66 km fiber. With 20 GHz pass-band filtering and large effective core area fibers, real-time secure key rates can reach 4.5 kbps and 5.1 kbps for co-propagation and counter-propagation at the maximum launch power, respectively. This demonstrates feasibility and represents an important step towards building a quantum network that coexists with the current backbone fiber infrastructure of classical communications.

Journal ArticleDOI
TL;DR: A gas sensing method based on quartz-tuning-fork enhanced photothermal spectroscopy (QEPTS) is reported in this paper, which demonstrates that QEPTS can be an ultra-high sensitive technique for gas detection and shows superiority when compared to usually used methods of tunable diode laser absorption spectroscopic and quartz-enhanced photoacoustic spectroscope.
Abstract: A gas sensing method based on quartz-tuning-fork enhanced photothermal spectroscopy (QEPTS) is reported in this paper. Unlike usually used thermally sensitive elements, a sharply resonant quartz-tuning-fork with the capability of enhanced mechanical resonance was used to amplify the photothermal signal level. Acetylene (C2H2) detection was used to verify the QEPTS sensor performance. The measured results indicate a minimum detection limit (MDL) of 718 ppb and a normalized noise equivalent absorption coefficient (NNEA) of 7.63 × 10-9 cm-1W/√Hz. This performance demonstrates that QEPTS can be an ultra-high sensitive technique for gas detection and shows superiority when compared to usually used methods of tunable diode laser absorption spectroscopy (TDLAS) and quartz-enhanced photoacoustic spectroscopy (QEPAS). Furthermore, when compared to an optical detector, especially a costly mercury cadmium telluride (MCT) detector with cryogenic cooling used in TDLAS, a quartz-tuning-fork is much cheap and tiny. Besides, compared to the QEPAS technique, QEPTS is a non-contact measurement technique and therefore can be used for standoff and remote trace gas detection.

Journal ArticleDOI
TL;DR: The fabricated modulator possesses a tightly confined optical mode, which lends itself to a strong interaction between the modulating RF field and the guided optical carrier; resulting in a measured DC half-wave voltage of 3.8 V·cm-1.
Abstract: We present a thin film crystal ion sliced (CIS) LiNbO3 phase modulator that demonstrates an unprecedented measured electro-optic (EO) response up to 500 GHz. Shallow rib waveguides are utilized for guiding a single transverse electric (TE) optical mode, and Au coplanar waveguides (CPWs) support the modulating radio frequency (RF) mode. Precise index matching between the co-propagating RF and optical modes is responsible for the device’s broadband response, which is estimated to extend even beyond 500 GHz. Matching the velocities of these co-propagating RF and optical modes is realized by cladding the modulator’s interaction region in a thin UV15 polymer layer, which increases the RF modal index. The fabricated modulator possesses a tightly confined optical mode, which lends itself to a strong interaction between the modulating RF field and the guided optical carrier; resulting in a measured DC half-wave voltage of 3.8 V·cm−1. The design, fabrication, and characterization of our broadband modulator is presented in this work.

Journal ArticleDOI
TL;DR: A broadband and tunable terahertz (THz) absorber based on a graphene-based metasurface, which is constructed by a single layer of closely patterned graphene concentric double rings and a metallic mirror separated by an ultrathin SiO2 layer.
Abstract: Electromagnetic (EM) wave absorption plays a vital role in photonics. While metasurfaces are proposed to absorb EM waves efficiently, most of them exhibit limited bandwidth and fixed functionalities. Here, we propose a broadband and tunable terahertz (THz) absorber based on a graphene-based metasurface, which is constructed by a single layer of closely patterned graphene concentric double rings and a metallic mirror separated by an ultrathin SiO2 layer. Plasmonic hybridization between two graphene rings significantly enlarges the absorption bandwidth, which can be further tuned by gating the graphene. Moreover, the specific design also makes our device insensitive to the incident angle and polarization state of impinging EM waves. Our results may inspire certain wave-modulation-related applications, such as THz imaging, smart absorber, tunable sensor, etc.

Journal ArticleDOI
TL;DR: This work designs a photonic structure that can adaptively turn 'on' and 'off' radiative cooling, depending the ambient temperature, without any extra energy input for switching.
Abstract: With the ability of harvesting the coldness of universe as a thermodynamic resource, radiative cooling technology is important for a broad range of applications such as passive building cooling, refrigeration, and renewable energy harvesting. However, all existing radiative cooling technologies utilize static structures, which lack the ability of self-adaptive tuning based on demand. Here we present the concept of self-adaptive radiative cooling based on phase change materials such as vanadium dioxide. We design a photonic structure that can adaptively turn 'on' and 'off' radiative cooling, depending the ambient temperature, without any extra energy input for switching. Our results here lead to new functionalities of radiative cooling and can potentially be used in a wide range of applications for the thermal managements of buildings, vehicles and textiles.

Journal ArticleDOI
TL;DR: A "locally periodic" approximation is employed in which the scattering problem is approximated by a composition of periodic scattering problems from each unit cell of the surface, and validated against brute-force Maxwell solutions.
Abstract: We present a computational framework for efficient optimization-based “inverse design” of large-area “metasurfaces” (subwavelength-patterned surfaces) for applications such as multi-wavelength/multi-angle optimizations, and demultiplexers. To optimize surfaces that can be thousands of wavelengths in diameter, with thousands (or millions) of parameters, the key is a fast approximate solver for the scattered field. We employ a “locally periodic” approximation in which the scattering problem is approximated by a composition of periodic scattering problems from each unit cell of the surface, and validate it against brute-force Maxwell solutions. This is an extension of ideas in previous metasurface designs, but with greatly increased flexibility, e.g. to automatically balance tradeoffs between multiple frequencies or to optimize a photonic device given only partial information about the desired field. Our approach even extends beyond the metasurface regime to non-subwavelength structures where additional diffracted orders must be included (but the period is not large enough to apply scalar diffraction theory).

Journal ArticleDOI
TL;DR: An overview of photonic switching technologies is provided and an evaluation methodology for assessing their potential impact on datacenter performance is developed, with special focus on the switching time, cost, power consumption, scalability and optical power penalty.
Abstract: Photonic switches are increasingly considered for insertion in high performance datacenter architectures to meet the growing performance demands of interconnection networks. We provide an overview of photonic switching technologies and develop an evaluation methodology for assessing their potential impact on datacenter performance. We begin with a review of three categories of optical switches, namely, free-space switches, III-V integrated switches and silicon integrated switches. The state-of-the-art of MEMS, LCOS, SOA, MZI and MRR switching technologies are covered, together with insights on their performance limitations and scalability considerations. The performance metrics that are required for optical switches to truly emerge in datacenters are discussed and summarized, with special focus on the switching time, cost, power consumption, scalability and optical power penalty. Furthermore, the Pareto front of the switch metric space is analyzed. Finally, we propose a hybrid integrated switch fabric design using the III-V/Si wafer bonding technique and investigate its potential impact on realizing reduced cost and power penalty.

Journal ArticleDOI
TL;DR: This work presents a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation.
Abstract: Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-bin encoded quantum computing, as well as dense quantum key distribution.

Journal ArticleDOI
TL;DR: A computational ghost imaging scheme, which utilizes an LED-based, high-speed illumination module is presented, which provides a cost-effective and high- speed imaging technique for dynamic imaging applications.
Abstract: Single-pixel imaging uses a single-pixel detector, rather than a focal plane detector array, to image a scene. It provides advantages for applications such as multi-wavelength, three-dimensional imaging. However, low frame rates have been a major obstacle inhibiting the use of computational ghost imaging technique in wider applications since its invention one decade ago. To address this problem, a computational ghost imaging scheme, which utilizes an LED-based, high-speed illumination module is presented in this work. At 32 × 32 pixel resolution, the proof-of-principle system achieved continuous imaging with 1000 fps frame rate, approximately two orders larger than those of other existing ghost imaging systems. The proposed scheme provides a cost-effective and high-speed imaging technique for dynamic imaging applications.

Journal ArticleDOI
TL;DR: The results indicate that the 45 nm and 32 nm processes provide a "sweet-spot" for adding photonic capability and enhancing integrated system applications beyond the Moore-scaling, while being able to offload major communication tasks from more deeply-scaled compute and memory chips without complicated 3D integration approaches.
Abstract: Integrating photonics with advanced electronics leverages transistor performance, process fidelity and package integration, to enable a new class of systems-on-a-chip for a variety of applications ranging from computing and communications to sensing and imaging. Monolithic silicon photonics is a promising solution to meet the energy efficiency, sensitivity, and cost requirements of these applications. In this review paper, we take a comprehensive view of the performance of the silicon-photonic technologies developed to date for photonic interconnect applications. We also present the latest performance and results of our "zero-change" silicon photonics platforms in 45 nm and 32 nm SOI CMOS. The results indicate that the 45 nm and 32 nm processes provide a "sweet-spot" for adding photonic capability and enhancing integrated system applications beyond the Moore-scaling, while being able to offload major communication tasks from more deeply-scaled compute and memory chips without complicated 3D integration approaches.

Journal ArticleDOI
TL;DR: This model provides useful guidelines to optimize the mini-LED backlit LCDs for achieving dynamic contrast ratio comparable to organic LED displays and suppress the halo effect to indistinguishable level.
Abstract: We analyze the performance of high dynamic range liquid crystal displays (LCDs) using a two-dimensional local dimming mini-LED backlight. The halo effect of such a HDR display system is investigated by both numerical simulation and human visual perception experiment. The halo effect is mainly governed by two factors: intrinsic LCD contrast ratio (CR) and dimming zone number. Based on our results, to suppress the halo effect to indistinguishable level, a LCD with CR≈5000:1 requires about 200 local dimming zones, while for a LCD with CR≈2000:1 the required dimming zone number is over 3000. Our model provides useful guidelines to optimize the mini-LED backlit LCDs for achieving dynamic contrast ratio comparable to organic LED displays.

Journal ArticleDOI
TL;DR: The RI sensitivity of the MMF-PCF-MMF structure is found to be higher than that of multimode fiber-single mode fiber-multimode fiber (MMF-SMF- MMF) structure, which means it has a broad application prospect in medical, environmental monitoring and manufacturing industry.
Abstract: Figure 1(c) in [Y. Wang, Optics Express 26, 1910 (2018)] contains an error and is corrected in this erratum.

Journal ArticleDOI
Alan She1, Shuyan Zhang1, Samuel Shian1, David R. Clarke1, Federico Capasso1 
TL;DR: In this paper, a scalable metasurface layout compression algorithm was used to reduce design file sizes for a centimeter diameter lens and stepper photolithography was used for fabrication.
Abstract: Optical components, such as lenses, have traditionally been made in the bulk form by shaping glass or other transparent materials. Recent advances in metasurfaces provide a new basis for recasting optical components into thin, planar elements, having similar or better performance using arrays of subwavelength-spaced optical phase-shifters. The technology required to mass produce them dates back to the mid-1990s, when the feature sizes of semiconductor manufacturing became considerably denser than the wavelength of light, advancing in stride with Moore’s law. This provides the possibility of unifying two industries: semiconductor manufacturing and lens-making, whereby the same technology used to make computer chips is used to make optical components, such as lenses, based on metasurfaces. Using a scalable metasurface layout compression algorithm that exponentially reduces design file sizes (by 3 orders of magnitude for a centimeter diameter lens) and stepper photolithography, we show the design and fabrication of metasurface lenses (metalenses) with extremely large areas, up to centimeters in diameter and beyond. Using a single two-centimeter diameter near-infrared metalens less than a micron thick fabricated in this way, we experimentally implement the ideal thin lens equation, while demonstrating high-quality imaging and diffraction-limited focusing.

Journal ArticleDOI
TL;DR: The eHoloNet is proposed, which can reconstruct the object wavefront directly from a single-shot in-line digital hologram and has strong robustness to the change of optical path difference between reference beam and object light and does not require the reference beam to be a plane or spherical wave.
Abstract: It is well known that in-line digital holography (DH) makes use of the full pixel count in forming the holographic imaging. But it usually requires phase-shifting or phase retrieval techniques to remove the zero-order and twin-image terms, resulting in the so-called two-step reconstruction process, i.e., phase recovery and focusing. Here, we propose a one-step end-to-end learning-based method for in-line holography reconstruction, namely, the eHoloNet, which can reconstruct the object wavefront directly from a single-shot in-line digital hologram. In addition, the proposed learning-based DH technique has strong robustness to the change of optical path difference between reference beam and object light and does not require the reference beam to be a plane or spherical wave.

Journal ArticleDOI
TL;DR: To the best of the knowledge, it is the first time to achieve passively Q-switched and mode-locked pulses in 3.5 μm spectral region and open the photonics application of two-dimensional materials in this spectral region.
Abstract: With the proposal of dual-wavelength pumping (DWP) scheme, DWP Er:ZBLAN fiber lasers at 3.5 μm have become a fascinating area of research. However, limited by the absence of suitable saturable absorber, passively Q-switched and mode-locked fiber lasers have not been realized in this spectral region. Based on the layer-dependent bandgap and excellent photoelectric characteristics of black phosphorus (BP), BP is a promising candidate for saturable absorber near 3.5 μm. Here, we fabricated a 3.5-μm saturable absorber mirror (SAM) by transferring BP flakes onto a Au-coated mirror. With the as-prepared BP SAM, we realized Q-switching and mode-locking operations in the DWP Er:ZBLAN fiber lasers at 3.5 μm. To the best of our knowledge, it is the first time to achieve passively Q-switched and mode-locked pulses in 3.5 μm spectral region. The research results will not only promote the development of 3.5-μm pulsed fiber lasers but also open the photonics application of two-dimensional materials in this spectral region.