scispace - formally typeset
Search or ask a question

Showing papers in "Trends in Endocrinology and Metabolism in 2016"


Journal ArticleDOI
TL;DR: The ways in which metabolic alterations convey changes in mitochondrial morphology and how disruption of mitochondrial morphology impacts cellular and organismal metabolism are reviewed.
Abstract: Mitochondrial morphology varies tremendously across cell types and tissues, changing rapidly in response to external insults and metabolic cues, such as nutrient status. The many functions of mitochondria have been intimately linked to their morphology, which is shaped by ongoing events of fusion and fission of outer and inner membranes (OM and IM). Unopposed fission causes mitochondrial fragmentation, which is generally associated with metabolic dysfunction and disease. Unopposed fusion results in a hyperfused network and serves to counteract metabolic insults, preserve cellular integrity, and protect against autophagy. Here, we review the ways in which metabolic alterations convey changes in mitochondrial morphology and how disruption of mitochondrial morphology impacts cellular and organismal metabolism.

854 citations


Journal ArticleDOI
TL;DR: This review examines the effects of excess FC in hepatocytes, Kupffer cells (KCs), and hepatic stellate cells (HSCs), and the subcellular mechanisms by which excess FC can induce cellular toxicity or proinflammatory and profibrotic effects in these cells.
Abstract: Lipotoxicity drives the development of progressive hepatic inflammation and fibrosis in a subgroup of patients with nonalcoholic fatty liver disease (NAFLD), causing nonalcoholic steatohepatitis (NASH) and even progression to cirrhosis and hepatocellular carcinoma (HCC). While the underlying molecular mechanisms responsible for the development of inflammation and fibrosis that characterize progressive NASH remain unclear, emerging evidence now suggests that hepatic free cholesterol (FC) is a major lipotoxic molecule critical in the development of experimental and human NASH. In this review, we examine the effects of excess FC in hepatocytes, Kupffer cells (KCs), and hepatic stellate cells (HSCs), and the subcellular mechanisms by which excess FC can induce cellular toxicity or proinflammatory and profibrotic effects in these cells.

321 citations


Journal ArticleDOI
TL;DR: New molecular insights aiding understanding of the initiation and progression of diabetic nephropathy are highlighted, including glomerular insulin resistance, dysregulation of cellular substrate utilisation, podocyte-endothelial communication, and inhibition of tubular sodium coupled glucose reabsorption.
Abstract: Diabetes mellitus (DM) is the major cause of end-stage renal disease (ESRD) globally, and novel treatments are urgently needed. Current therapeutic approaches for diabetic nephropathy (DN) are focussing on blood pressure control with inhibitors of the renin-angiotensin-aldosterone system, on glycaemic and lipid control, and life-style changes. In this review, we highlight new molecular insights aiding our understanding of the initiation and progression of DN, including glomerular insulin resistance, dysregulation of cellular substrate utilisation, podocyte-endothelial communication, and inhibition of tubular sodium coupled glucose reabsorption. We believe that these mechanisms offer new therapeutic targets that can be exploited to develop important renoprotective treatments for DN over the next decade.

227 citations


Journal ArticleDOI
TL;DR: It is worth considering treatment of circadian/sleep disruption as a means to alleviate symptoms of neurodegenerative disorders, based on data from animal models for some of these disorders.
Abstract: Sleep–wake cycles are known to be disrupted in people with neurodegenerative disorders. These findings are now supported by data from animal models for some of these disorders, raising the question of whether the disrupted sleep/circadian regulation contributes to the loss of neural function. As circadian rhythms and sleep consolidation also break down with normal aging, changes in these may be part of what makes aging a risk factor for disorders like Alzheimer's disease (AD). Mechanisms underlying the connection between circadian/sleep dysregulation and neurodegeneration remain unclear, but several recent studies provide interesting possibilities. While mechanistic analysis is under way, it is worth considering treatment of circadian/sleep disruption as a means to alleviate symptoms of neurodegenerative disorders.

225 citations


Journal ArticleDOI
TL;DR: An in-depth understanding of the mechanisms underlying glucose regulation by the circadian system and its disturbance may help in the development of therapeutic interventions against the deleterious health consequences of circadian disruption.
Abstract: The circadian system serves one of the most fundamental properties present in nearly all organisms: it generates 24-h rhythms in behavioral and physiological processes and enables anticipating and adapting to daily environmental changes. Recent studies indicate that the circadian system is important in regulating the daily rhythm in glucose metabolism. Disturbance of this circadian control or of its coordination relative to the environmental/behavioral cycle, such as in shift work, eating late, or due to genetic changes, results in disturbed glucose control and increased type 2 diabetes risk. Therefore, an in-depth understanding of the mechanisms underlying glucose regulation by the circadian system and its disturbance may help in the development of therapeutic interventions against the deleterious health consequences of circadian disruption.

213 citations


Journal ArticleDOI
TL;DR: Time-restricted feeding (TRF), during which time of access to food is restricted to a few hours, without caloric restriction, supports robust metabolic cycles and protects against nutritional challenges that predispose to obesity and dysmetabolism.
Abstract: Cyclical expression of cell-autonomous circadian clock components and key metabolic regulators coordinate often discordant and distant cellular processes for efficient metabolism. Perturbation of these cycles, either by genetic manipulation, disruption of light/dark cycles, or, most relevant to the human population, via eating patterns, contributes to obesity and dysmetabolism. Time-restricted feeding (TRF), during which time of access to food is restricted to a few hours, without caloric restriction, supports robust metabolic cycles and protects against nutritional challenges that predispose to obesity and dysmetabolism. The mechanism by which TRF imparts its benefits is not fully understood but likely involves entrainment of metabolically active organs through gut signaling. Understanding the relationship of feeding pattern and metabolism could yield novel therapies for the obesity pandemic.

184 citations


Journal ArticleDOI
TL;DR: The most recent findings are discussed, including partial epithelial-to-mesenchymal transition (EMT), in the initiation and progression of tissue fibrosis and chronic kidney disease (CKD).
Abstract: Kidney fibrosis is the unavoidable consequence of chronic kidney disease irrespective of the primary underlying insult. It is a complex phenomenon governed by the interplay between different cellular components and intricate networks of signaling pathways, which together lead to loss of renal functionality and replacement of kidney parenchyma with scar tissue. An immense effort has recently been made to understand the molecular and cellular mechanisms leading to kidney fibrosis. The cellular protagonists of this process include myofibroblasts, tubular epithelial cells, endothelial cells, and immune cells. We discuss here the most recent findings, including partial epithelial-to-mesenchymal transition (EMT), in the initiation and progression of tissue fibrosis and chronic kidney disease (CKD). A deep understanding of these mechanisms will allow the development of effective therapies.

183 citations


Journal ArticleDOI
TL;DR: A review discusses recent findings suggesting that shifts in the microbiota may contribute to chronic disease via effects on the immune system through changes in microbiota-derived metabolites.
Abstract: Chronic inflammatory diseases (CIDs) are the most important causes of mortality in the world today and are on the rise. We now know that immune-driven inflammation is critical in the etiology of these diseases, though the environmental triggers and cellular mechanisms that lead to their development are still mysterious. Many CIDs are associated with significant shifts in the microbiota toward inflammatory configurations, which can affect the host both by inducing local and systemic inflammation and by alterations in microbiota-derived metabolites. This review discusses recent findings suggesting that shifts in the microbiota may contribute to chronic disease via effects on the immune system.

181 citations


Journal ArticleDOI
TL;DR: This review highlights several recent conceptual developments pertaining to the origin and function of MAT adipocytes; considers the relationship of MAT to beige, brown, and white adipose depots; explore MAT expansion and turnover in humans and rodents; and discusses future directions for MAT research in the context of endocrine function and metabolic disease.
Abstract: Marrow adipose tissue (MAT) is a unique fat depot, located in the skeleton, that has the potential to contribute to both local and systemic metabolic processes. In this review we highlight several recent conceptual developments pertaining to the origin and function of MAT adipocytes; consider the relationship of MAT to beige, brown, and white adipose depots; explore MAT expansion and turnover in humans and rodents; and discuss future directions for MAT research in the context of endocrine function and metabolic disease. MAT has the potential to exert both local and systemic effects on metabolic homeostasis, skeletal remodeling, hematopoiesis, and the development of bone metastases. The diversity of these functions highlights the breadth of the potential impact of MAT on health and disease.

157 citations


Journal ArticleDOI
TL;DR: In this article, the authors link fructose consumption with metabolic disease, an association attributable in part to fructose-mediated lipogenesis, and propose interventions that decrease fructose consumption and therapies that block fructose-induced lipogenesis.
Abstract: Epidemiological studies link fructose consumption with metabolic disease, an association attributable in part to fructose-mediated lipogenesis. The mechanisms governing fructose-induced lipogenesis and disease remain debated. Acutely, fructose increases de novo lipogenesis through the efficient and uninhibited action of ketohexokinase and aldolase B which yields substrates for fatty-acid synthesis. Chronic fructose consumption further enhances the capacity for hepatic fructose metabolism by activating several key transcription factors (i.e., SREBP1c and ChREBP) which augment the expression of lipogenic enzymes, increasing lipogenesis and further compounding hypertriglyceridemia and hepatic steatosis. Hepatic insulin resistance develops from diacylglycerol–PKCɛ-mediated impairment of insulin signaling and possibly additional mechanisms. Initiatives that decrease fructose consumption and therapies that block fructose-mediated lipogenesis will be necessary to avert future metabolic pandemics.

146 citations


Journal ArticleDOI
TL;DR: Increasing evidence indicates that modern lifestyle, and specifically a Western diet, has led to a substantial depletion of the human gut microbiome, providing an incentive to fundamentally transform human nutrition towards being more holistic and microbiome-focused.
Abstract: Increasing evidence indicates that modern lifestyle, and specifically a Western diet, has led to a substantial depletion of the human gut microbiome. This loss is implicated in the rampant increase of chronic diseases, providing an incentive to fundamentally transform human nutrition towards being more holistic and microbiome-focused.

Journal ArticleDOI
TL;DR: A synthesis of recent advances that highlight the roles of the Ca(2+)/CaMK axis in key metabolic tissues is provided and an appreciation of this information is critical to understanding the mechanisms by which Ca( 2+/CaM-dependent signaling contributes to metabolic homeostasis and disease.
Abstract: Calcium (Ca(2+)) is an essential ligand that binds its primary intracellular receptor calmodulin (CaM) to trigger a variety of downstream processes and pathways. Central to the actions of Ca(2+)/CaM is the activation of a highly conserved Ca(2+)/CaM kinase (CaMK) cascade that amplifies Ca(2+) signals through a series of subsequent phosphorylation events. Proper regulation of Ca(2+) flux is necessary for whole-body metabolism and disruption of Ca(2+) homeostasis has been linked to various metabolic diseases. Here we provide a synthesis of recent advances that highlight the roles of the Ca(2+)/CaMK axis in key metabolic tissues. An appreciation of this information is critical to understanding the mechanisms by which Ca(2+)/CaM-dependent signaling contributes to metabolic homeostasis and disease.

Journal ArticleDOI
TL;DR: This work has shown that therapeutic interventions will be most effective when multiple approaches are used in conjunction with nutritional support and exercise.
Abstract: Skeletal muscle wasting occurs in a variety of diseases including diabetes, cancer, Crohn's disease, chronic obstructive pulmonary disease (COPD), disuse, and denervation. Tumor necrosis factor α (TNF-α) is involved in mediating the wasting effect. To date, a causal relationship between TNF-α signaling and muscle wasting has been established in animal models. However, results from clinical trials are conflicting. This is partly due to the fact that other factors such as TNF-like weak inducer of apoptosis (TWEAK) and interleukin 6 (IL-6) are also involved in skeletal muscle wasting. Because muscle wasting is often associated with physical inactivity and reduced food intake, therapeutic interventions will be most effective when multiple approaches are used in conjunction with nutritional support and exercise.

Journal ArticleDOI
TL;DR: Interestingly, weight loss restores ghrelin secretion and function, and it is hypothesized that ghrelIn resistance is a mechanism designed to protect a higher body weight set-point established during times of food availability, to maximize energy reserves during a time of food scarcity.
Abstract: Ghrelin is a metabolic hormone that promotes energy conservation by regulating appetite and energy expenditure. Although some studies suggest that antagonizing ghrelin function attenuates body weight gain and glucose intolerance on a high calorie diet, there is little information about the metabolic actions of ghrelin in the obese state. In this review, we discuss the novel concept of obesity-induced central ghrelin resistance in neural circuits regulating behavior, and impaired ghrelin secretion from the stomach. Interestingly, weight loss restores ghrelin secretion and function, and we hypothesize that ghrelin resistance is a mechanism designed to protect a higher body weight set-point established during times of food availability, to maximize energy reserves during a time of food scarcity.

Journal ArticleDOI
TL;DR: This review focuses on recent research into the role of LXRs in the CNS during normal development and homeostasis and in disease states.
Abstract: Liver X receptors (LXRs) are master regulators of cholesterol homeostasis and inflammation in the central nervous system (CNS). The brain, which contains a disproportionately large amount of the body's total cholesterol (∼25%), requires a complex and delicately balanced cholesterol metabolism to maintain neuronal function. Dysregulation of cholesterol metabolism has been implicated in numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Due to their cholesterol-sensing and anti-inflammatory activities, LXRs are positioned centrally in the everyday maintenance of CNS function. This review focuses on recent research into the role of LXRs in the CNS during normal development and homeostasis and in disease states.

Journal ArticleDOI
TL;DR: This work discusses recent knowledge of the interactions between estrogens and gut microbiota, and new insights that might offer new approaches to influence this crosstalk and improve metabolic outcomes.
Abstract: Recent advances have suggested that steroid hormones such as estrogens, and gut microbiota might synergize to influence obesity, diabetes, and cancer. We discuss recent knowledge of the interactions between estrogens and gut microbiota, and new insights that might offer new approaches to influence this crosstalk and improve metabolic outcomes.

Journal ArticleDOI
TL;DR: Overlap exists between the genes implicated in monogenic and complex forms of bone mass disorders, largely explained by the clustering of genes encoding factors in signaling pathways crucial for mesenchymal cell differentiation, skeletal development and bone remodeling and metabolism.
Abstract: Genomic technologies have evolved rapidly contributing to the understanding of diseases. Genome-wide association studies (GWAS) and whole-exome sequencing have aided the identification of the genetic determinants of monogenic and complex conditions including osteoporosis and bone mass disorders. Overlap exists between the genes implicated in monogenic and complex forms of bone mass disorders, largely explained by the clustering of genes encoding factors in signaling pathways crucial for mesenchymal cell differentiation, skeletal development, and bone remodeling and metabolism. Numerous of the remaining discovered genes merit functional follow-up studies to elucidate their role in bone biology. The insight provided by genetic studies is serving the identification of biomarkers predictive of disease, redefining disease, response to treatment, and discovery of novel drug targets for skeletal disorders.

Journal ArticleDOI
TL;DR: The selective breakdown by autophagy of lipid droplet (LD)-stored lipids, termed lipophagy, is a lysosomal lipolytic pathway that complements the actions of cytosolic neutral lipases.
Abstract: The selective breakdown by autophagy of lipid droplet (LD)-stored lipids, termed lipophagy, is a lysosomal lipolytic pathway that complements the actions of cytosolic neutral lipases. The physiological importance of lipophagy has been demonstrated in multiple mammalian cell types, as well as in lower organisms, and this pathway has many functions in addition to supplying free fatty acids to maintain cellular energy stores. Recent studies have begun to delineate the molecular mechanisms of the selective recognition of LDs by the autophagic machinery, as well as the intricate crosstalk between the different forms of autophagy and neutral lipases. These studies have led to increased interest in the role of lipophagy in both human disease pathogenesis and therapy.

Journal ArticleDOI
TL;DR: An overview of the epigenetic mechanisms influencing immune cell phenotype and function is provided, current knowledge about epigenetic changes affecting immune functions in the context of metabolic diseases is summarized, and the therapeutic options currently available to counteract epigenetically driven metabolic complications are discussed.
Abstract: Recent research developments have shed light on the risk factors contributing to metabolic complications, implicating both genetic and environmental factors, potentially integrated by epigenetic mechanisms. Distinct epigenetic changes in immune cells are frequently observed in obesity and type 2 diabetes mellitus, and these are associated with alterations in the phenotype, function, and trafficking patterns of these cells. The first step in the development of effective therapeutic strategies is the identification of distinct epigenetic signatures associated with metabolic disorders. In this review we provide an overview of the epigenetic mechanisms influencing immune cell phenotype and function, summarize current knowledge about epigenetic changes affecting immune functions in the context of metabolic diseases, and discuss the therapeutic options currently available to counteract epigenetically driven metabolic complications.

Journal ArticleDOI
TL;DR: Emerging data suggest that a specific cardiomyopathy can be identified in acromegaly patients with diabetes, and the presence of diabetes may also influence therapeutic decision making in acROMegaly, since traditional and newly developed drugs used in this clinical setting may impact glucose metabolism regardless of control of GH hypersecretion.
Abstract: Diabetes mellitus is a frequent complication of acromegaly, a disease characterized by chronic hypersecretion of growth hormone (GH) by a pituitary adenoma. Diabetes occurs commonly but not only as a consequence of an insulin-resistant state induced by GH excess. The development of diabetes in patients with acromegaly is clinically relevant, since such a complication is thought to increase the already elevated cardiovascular morbidity and mortality risk of the disease. Emerging data suggest that a specific cardiomyopathy can be identified in acromegaly patients with diabetes. Moreover, the presence of diabetes may also influence therapeutic decision making in acromegaly, since traditional and newly developed drugs used in this clinical setting may impact glucose metabolism regardless of control of GH hypersecretion.

Journal ArticleDOI
TL;DR: Emerging concepts regarding dWAT physiology and its significance to a variety of cellular processes are discussed.
Abstract: Dermal white adipose tissue (dWAT) has received little appreciation in the past as a distinct entity from the better recognized subcutaneous white adipose tissue (sWAT). However, recent work has established dWAT as an important contributor to a multitude of processes, including immune response, wound healing and scarring, hair follicle (HF) growth, and thermoregulation. Unique metabolic contributions have also been attributed to dWAT, at least in part due to its thermic insulation properties and response to cold exposure. Dermal adipocytes can also undergo an adipocyte–myofibroblast transition (AMT), a process that is suspected to have an important role in several pathophysiological processes within the skin. Here, we discuss emerging concepts regarding dWAT physiology and its significance to a variety of cellular processes.

Journal ArticleDOI
TL;DR: This research identifies several major axes by which the circadian clock exerts these effects, including systemic signals as well as direct control of cellular processes by local clocks, which can transmit metabolic and timing information bidirectionally for optimal synchrony of metabolic processes.
Abstract: The circadian clock directs nearly all aspects of diurnal physiology, including metabolism. Current research identifies several major axes by which it exerts these effects, including systemic signals as well as direct control of cellular processes by local clocks. This redundant network can transmit metabolic and timing information bidirectionally for optimal synchrony of metabolic processes. Recent advances in cellular profiling and metabolomics technologies have yielded unprecedented insights into the mechanisms behind this control. They have also helped to illuminate individual variation in these mechanisms that could prove important in personalized therapy for metabolic disease. Finally, these technologies have provided platforms with which to screen for the first potential drugs affecting clock-modulated metabolic function.

Journal ArticleDOI
TL;DR: Skeletal muscle constitutes ∼40% of body mass and has the capacity to play a major role as thermogenic, metabolic, and endocrine organ, suggesting a role for SLN during increased metabolic demand.
Abstract: Skeletal muscle constitutes ∼40% of body mass and has the capacity to play a major role as thermogenic, metabolic, and endocrine organ. In addition to shivering, muscle also contributes to nonshivering thermogenesis via futile sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) activity. Sarcolipin (SLN), a regulator of SERCA activity in muscle, plays an important role in regulating muscle thermogenesis and metabolism. Uncoupling of SERCA by SLN increases ATP hydrolysis and heat production, and contributes to temperature homeostasis. SLN also affects whole-body metabolism and weight gain in mice, and is upregulated in various muscle diseases including muscular dystrophy, suggesting a role for SLN during increased metabolic demand. In this review we also highlight the physiological roles of skeletal muscle beyond contraction.

Journal ArticleDOI
TL;DR: In this review, how and why browning in chronic hypermetabolic associated diseases can be detrimental and lead to adverse outcomes is analyzed.
Abstract: The study of white adipose tissue (WAT) 'browning' has become a 'hot topic' in various acute and chronic metabolic conditions, based on the idea that WAT browning might be able to facilitate weight loss and improve metabolic health. However, this view cannot be translated into all areas of medicine. Recent studies identified effects of browning associated with adverse outcomes, and as more studies are being conducted, a very different picture has emerged about WAT browning and its detrimental effect in acute and chronic hypermetabolic conditions. Therefore, the notion that browning is supposedly beneficial may be inadequate. In this review we analyze how and why browning in chronic hypermetabolic associated diseases can be detrimental and lead to adverse outcomes.

Journal ArticleDOI
TL;DR: A perspective on the physiological roles of estrogen, androgens, and P4 via their receptors in pancreatic β cells in the gender-specific tuning of insulin secretion is presented.
Abstract: The gonads have long been considered endocrine glands, producing sex steroids such as estrogens, androgens, and progesterone (P4) for the sole purpose of sexual differentiation, puberty, and reproduction. Reproduction and energy metabolism are tightly linked, however, and gonadal steroids play an important role in sex-specific aspects of energy metabolism in various physiological conditions. In that respect, gonadal steroids also influence the secretion of insulin in a sex-specific manner. This review presents a perspective on the physiological roles of estrogens, androgens, and P4 via their receptors in pancreatic β cells in the gender-specific tuning of insulin secretion. I also discuss potential gender-specific therapeutic avenues that this knowledge may open in the future.

Journal ArticleDOI
TL;DR: The substantial progress in understanding the mechanism underlying the action of PRDM16 in adipose biology may have relevance to other PRDM family members, and this new knowledge has the potential to be exploited for therapeutic benefit.
Abstract: The PRDM [PRDI-BFI (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) homologous domain containing] protein family is involved in a spectrum of biological processes including cell fate determination and development. These proteins regulate transcription through intrinsic chromatin-modifying activity or by complexing with histone-modifying or other nuclear proteins. Studies have indicated crucial roles for PRDM16 in the determination and function of brown and beige fat as well as in hematopoiesis and cardiac development, highlighting the importance of PRDM16 in developmental processes in different tissues. More recently, PRDM16 mutations were also identified in humans. The substantial progress in understanding the mechanism underlying the action of PRDM16 in adipose biology may have relevance to other PRDM family members, and this new knowledge has the potential to be exploited for therapeutic benefit.

Journal ArticleDOI
TL;DR: Recent advances regarding the understanding of the structure and function of IDE and the discovery of IDE inhibitors are focused on, as well as challenges in developing IDE-based therapy for human diseases, particularly T2DM.
Abstract: Insulin-degrading enzyme (IDE) selectively degrades peptides, such as insulin, amylin, and amyloid β (Aβ) that form toxic aggregates, to maintain proteostasis. IDE defects are linked to the development of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD). Structural and biochemical analyses revealed the molecular basis for IDE-mediated destruction of amyloidogenic peptides and this information has been exploited to develop promising inhibitors of IDE to improve glucose homeostasis. However, the inhibition of IDE can also lead to glucose intolerance. In this review, I focus on recent advances regarding our understanding of the structure and function of IDE and the discovery of IDE inhibitors, as well as challenges in developing IDE-based therapy for human diseases, particularly T2DM.

Journal ArticleDOI
TL;DR: It is proposed that inhibition of Plin2 might be a strategy to counteract several metabolic and age-related diseases.
Abstract: Perilipin 2 (Plin2), a protein associated with the metabolism of intracellular lipid droplets (LDs), has long been considered only for its role in lipid storage. However, the manipulation of its expression affects the severity of a variety of metabolic and age-related diseases, such as fatty liver, insulin resistance and type 2 diabetes (T2D), cardiovascular disease, atherosclerosis, sarcopenia, and cancer, suggesting that this protein may play a role in these pathological conditions. In particular, its downregulation in mice prevents or mitigates some of the above mentioned diseases. Conversely, in humans high levels of Plin2 are present in sarcopenia, hepatic steatosis, atherosclerosis, and some types of cancer. We propose that inhibition of Plin2 might be a strategy to counteract several metabolic and age-related diseases.

Journal ArticleDOI
TL;DR: The present knowledge on the role of nutrient sensing receptors as metabolic sensors in β cell function and physiology is summarized, revealing new therapeutic opportunities for type 2 diabetes.
Abstract: Nutrient sensing receptors are key metabolic mediators of responses to dietary and endogenously derived nutrients. These receptors are largely G-protein-coupled receptors (GPCRs) and many are gaining significant interest as drug targets with a potential therapeutic role in metabolic diseases. A distinct subclass of nutrient sensing GPCRs, two short chain fatty acid (SCFA) receptors (FFA2 and FFA3) are uniquely responsive to gut microbiota derived nutrients (such as acetate, propionate, and butyrate). Pharmacological, molecular, and genetic studies have investigated their role in organismal glucose metabolism and recently in pancreatic β cell biology. Here, we summarize the present knowledge on the role of these receptors as metabolic sensors in β cell function and physiology, revealing new therapeutic opportunities for type 2 diabetes.

Journal ArticleDOI
TL;DR: The discovery of GPIHBP1 has substantially revised the understanding of intravascular triglyceride metabolism but has also raised many new questions for future research.
Abstract: GPIHBP1, a GPI-anchored protein in capillary endothelial cells, is crucial for the lipolytic processing of triglyceride-rich lipoproteins (TRLs). GPIHBP1 shuttles lipoprotein lipase (LPL) to its site of action in the capillary lumen and is essential for the margination of TRLs along capillaries - such that lipolytic processing can proceed. GPIHBP1 also reduces the unfolding of the LPL catalytic domain, thereby stabilizing LPL catalytic activity. Many different GPIHBP1 mutations have been identified in patients with severe hypertriglyceridemia (chylomicronemia), the majority of which interfere with folding of the protein and abolish its capacity to bind and transport LPL. The discovery of GPIHBP1 has substantially revised our understanding of intravascular triglyceride metabolism but has also raised many new questions for future research.