scispace - formally typeset
Journal ArticleDOI

A Hierarchical Z-Scheme CdS-WO3 Photocatalyst with Enhanced CO2 Reduction Activity

Reads0
Chats0
TLDR
This study provides novel insights into the design and fabrication of high-performance artificial Z-scheme photocatalytic CO(2) reduction to perform photocatalyst reduction to form CH(4) under visible light irradiation.
Abstract
The development of an artificial photosynthetic system is a promising strategy to convert solar energy into chemical fuels. Here, a direct Z-scheme CdS-WO(3) photocatalyst without an electron mediator is fabricated by imitating natural photosynthesis of green plants. Photocatalytic activities of as-prepared samples are evaluated on the basis of photocatalytic CO(2) reduction to form CH(4) under visible light irradiation. These Z-scheme-heterostructured samples show a higher photocatalytic CO(2) reduction than single-phase photocatalysts. An optimized CdS-WO(3) heterostructure sample exhibits the highest CH(4) production rate of 1.02 μmol h(-1) g(-1) with 5 mol% CdS content, which exceeds the rates observed in single-phase WO(3) and CdS samples for approximately 100 and ten times under the same reaction condition, respectively. The enhanced photocatalytic activity could be attributed to the formation of a hierarchical direct Z-scheme CdS-WO(3) photocatalyst, resulting in an efficient spatial separation of photo-induced electron-hole pairs. Reduction and oxidation catalytic centers are maintained in two different regions to minimize undesirable back reactions of the photocatalytic products. The introduction of CdS can enhance CO(2) molecule adsorption, thereby accelerating photocatalytic CO(2) reduction to CH(4). This study provides novel insights into the design and fabrication of high-performance artificial Z-scheme photocatalysts to perform photocatalytic CO(2) reduction.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

S-Scheme Heterojunction Photocatalyst

TL;DR: In this article, the authors soberly reflect the charge transfer mechanism from many perspectives and are finally aware of the fundamental challenges they face to ensure a correct understanding, it is necessary to share their analysis with others Moreover, step-scheme heterojunctions, consisting of a reduction photocatalyst and an oxidizer with staggered band structure, are introduced to avoid misinterpretation.
Journal ArticleDOI

Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst

TL;DR: In this paper, an ultrathin 2D/2D WO3/g-C3N4 step-like composite composite heterojunction photocatalysts were fabricated by electrostatic self-assembly of ultra-thin tungsten trioxide (WO3) and graphitic carbon nitride (g)-nodes.
Journal ArticleDOI

Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels.

TL;DR: Various cocatalysts, such as the biomimetic, metal-based,Metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area.
Journal ArticleDOI

Direct Z-scheme photocatalysts: Principles, synthesis, and applications

TL;DR: In this article, a review concisely compiles the recent progress in the fabrication, modification, and major applications of the direct Z-scheme photocatalysts; the latter include water splitting, carbon dioxide reduction, degradation of pollutants, and biohazard disinfection.
Journal ArticleDOI

Hierarchical Porous O-doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Activity

TL;DR: This work provides a novel strategy to design hierarchical g-C3 N4 nanostructures, which can be used as promising photocatalyst for solar energy conversion.
References
More filters
Journal ArticleDOI

Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)

TL;DR: Mise au point comportant des definitions generales et la terminologie, la methodologie utilisee, les procedes experimentaux, les interpretations des donnees d'adsorption, les determinations de l'aire superficielle, and les donnes sur la mesoporosite et la microporosite.
Journal ArticleDOI

The absolute energy positions of conduction and valence bands of selected semiconducting minerals

TL;DR: In this article, the absolute energy positions of conduction and valence band edges were compiled for about 50 each semiconducting metal oxide and metal sulfide minerals, and the relationship between energy levels at mineral semiconductor-electrolyte interfaces and the activities of these minerals as a catalyst or photocatalyst in aqueous redox reactions were reviewed.
Journal ArticleDOI

Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders

TL;DR: In this paper, the photoelectrocatalytic reduction of carbon dioxide to form organic compounds such as formic acid, formaldeyde, methyl alcohol and methane, in the presence of photosensitive semiconductor powders suspended in water as catalysts, is described.
Journal ArticleDOI

Photocatalytic reduction of CO2 on TiO2 and other semiconductors.

TL;DR: In this paper, the authors present a review of the current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors.
Journal ArticleDOI

Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets.

TL;DR: High photocatalytic H(2)-production activity is attributed predominantly to the presence of graphene, which serves as an electron collector and transporter to efficiently lengthen the lifetime of the photogenerated charge carriers from CdS nanoparticles.
Related Papers (5)