scispace - formally typeset
Open AccessJournal ArticleDOI

A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood

TLDR
These regulated proteolytic cleavage reactions are ultimately responsible for controlling the level of cholesterol in membranes, cells, and blood.
Abstract
The integrity of cell membranes is maintained by a balance between the amount of cholesterol and the amounts of unsaturated and saturated fatty acids in phospholipids. This balance is maintained by membrane-bound transcription factors called sterol regulatory element-binding proteins (SREBPs) that activate genes encoding enzymes of cholesterol and fatty acid biosynthesis. To enhance transcription, the active NH2-terminal domains of SREBPs are released from endoplasmic reticulum membranes by two sequential cleavages. The first is catalyzed by Site-1 protease (S1P), a membrane-bound subtilisin-related serine protease that cleaves the hydrophilic loop of SREBP that projects into the endoplasmic reticulum lumen. The second cleavage, at Site-2, requires the action of S2P, a hydrophobic protein that appears to be a zinc metalloprotease. This cleavage is unusual because it occurs within a membrane-spanning domain of SREBP. Sterols block SREBP processing by inhibiting S1P. This response is mediated by SREBP cleavage-activating protein (SCAP), a regulatory protein that activates S1P and also serves as a sterol sensor, losing its activity when sterols overaccumulate in cells. These regulated proteolytic cleavage reactions are ultimately responsible for controlling the level of cholesterol in membranes, cells, and blood.

read more

Citations
More filters
Journal ArticleDOI

The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation

TL;DR: The vast majority of proteins that a cell secretes or displays on its surface first enter the endoplasmic reticulum, where they fold and assemble, and only properly assembled proteins advance from the ER to the cell surface.
Journal ArticleDOI

Atherosclerosis: The Road Ahead

TL;DR: Elevated levels of serum cholesterol are probably unique through the hepatic LDL receptor pathway, as evi-in being sufficient to drive the development of athero-denced by the fact that lack of functional LDL receptors sclerosis in humans and experimental animals, even in is responsible for the massive accumulation of LDL in the absence of other known risk factors.
Journal ArticleDOI

Store-operated calcium channels.

TL;DR: The key electrophysiological features of I(CRAC) and other store-operated Ca(2+) currents and how they are regulated are described, and recent advances that have shed insight into the molecular mechanisms involved in this ubiquitous and vital Ca( 2+) entry pathway are considered.
Journal ArticleDOI

Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ

TL;DR: A novel LXR target is described, the sterol regulatory element-binding protein-1c gene (SREBP-1C), which encodes a membrane-bound transcription factor of the basic helix-loop-helix-leucine zipper family and reveals a unique regulatory interplay between cholesterol and fatty acid metabolism.
References
More filters
Journal ArticleDOI

Subtilases: the superfamily of subtilisin-like serine proteases.

TL;DR: Details of more than 100 new subtilases discovered in the past five years are summarized, and amino acid sequences of their catalytic domains are compared in a multiple sequence alignment.
Journal ArticleDOI

SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene

TL;DR: The cDNA cloning of human SREBP-1 is reported, a protein that binds SRE-1, activates transcription, and thereby mediates the final regulatory step in LDL metabolism, abolishing sterol regulation.
Journal ArticleDOI

Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells.

TL;DR: SRE BP-1a is the most active form of SREBP-1 and that SREbp-1c may be produced when cells require a lower rate of transcription of genes regulating cholesterol and fatty acid metabolism.
Journal ArticleDOI

Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins.

TL;DR: The present review covers the structure and function of mammalian subtilisin/Kex2p-like proprotein convertases, focusing on furin (EC 3.4.21).
Journal ArticleDOI

Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene.

TL;DR: The mouse model may provide an important resource for studying the role of NPC1 in cholesterol homeostasis and neurodegeneration and for assessing the efficacy of new drugs for NP-C disease.
Related Papers (5)