scispace - formally typeset
Open AccessJournal ArticleDOI

Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells.

Stephen H. Leppla
- 01 May 1982 - 
- Vol. 79, Iss: 10, pp 3162-3166
Reads0
Chats0
TLDR
It is shown here that EF is an adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1] produced by Bacillus anthracis in an inactive form and nearly equals that of the most active known cyclase.
Abstract
Anthrax toxin is composed of three proteins: protective antigen (PA), lethal factor (LF), and edema factor (EF). These proteins individually cause no known physiological effects in animals but in pairs produce two toxic actions. Injection of PA with LF causes death of rats in 60 min, whereas PA with EF causes edema in the skin of rabbits and guinea pigs. The mechanisms of action of these proteins have not been determined. It is shown here that EF is an adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] produced by Bacillus anthracis in an inactive form. Activation occurs upon contact with a heat-stable eukaryotic cell material. The specific activity of the resulting adenylate cyclase nearly equals that of the most active known cyclase. In Chinese hamster ovary cells exposed to PA and EF, cAMP concentrations increase without a lag to values about 200-fold above normal, remain high in the continued presence of toxin, and decrease rapidly after its removal. The increase in cAMP is completely blocked by excess LF. It is suggested that PA interacts with cells to form a receptor system by which EF and perhaps LF gain access to the cytoplasm.

read more

Citations
More filters
Journal ArticleDOI

Anthrax toxins: a paradigm of bacterial immune suppression

TL;DR: B. anthracis can invade the host, with ensuing massive bacteremia and toxemia, and the specific effects of B. Anthracis on neutrophils, macrophages, dendritic cells, T- and B-lymphocytes are reviewed.
Journal ArticleDOI

Cloning and characterization of a gene whose product is a trans-activator of anthrax toxin synthesis.

TL;DR: Results demonstrate that the atxA product activates not only transcription of pag but also that of cya and lef, and plays a role in the induction of anthrax toxin gene expression by bicarbonate.
Journal ArticleDOI

Cloning of the protective antigen gene of Bacillus anthracis

TL;DR: Recombinant plasmids containing the PA gene have been isolated in the E. coli vector pBR322 from Bam HI-generated fragments of the anthrax plasmid, pBA1.
Journal ArticleDOI

Inhalational Anthrax: Epidemiology, Diagnosis, and Management

TL;DR: The course of inhalational anthrax is dramatic, from the insidious onset of nonspecific influenza-like symptoms to severe dyspnea, hypotension, and hemorrhage within days of exposure, culminating in septic shock, respiratory distress, and death within 24 h.
References
More filters
Journal Article

Protein Measurement with the Folin Phenol Reagent

TL;DR: Procedures are described for measuring protein in solution or after precipitation with acids or other agents, and for the determination of as little as 0.2 gamma of protein.
Journal ArticleDOI

Restoration of Several Morphological Characteristics of Normal Fibroblasts in Sarcoma Cells Treated with Adenosine-3':5'-Cyclic Monophosphate and Its Derivatives

TL;DR: The data suggest that cyclic AMP may be an important factor in the determination of morphology of normal fibroblasts and this function may be lost or altered during transformation.
Journal ArticleDOI

Activation of adenylate cyclase by choleragen.

J Moss, +1 more
TL;DR: An attempt is made to evaluate the mechanism of action of NAD Glycohydrolase and ADP-Ribosyltransferase on GTP-Binding Protein and GTPase Activity in response to the presence of Gangliosides and Their Oligosaccharides in Choleragen.
Journal ArticleDOI

A Permeability Factor (Toxin) found in Cholera Stools and Culture Filtrates and its Neutralization by Convalescent Cholera Sera.

TL;DR: A Permeability Factor (Toxin) found in Cholera Stools and Culture Filtrates and its Neutralization by Convalescent CholERA Sera is found to be neutralized by convalescent cholera patients.
Related Papers (5)