scispace - formally typeset
Journal ArticleDOI

Axial vector vertex in spinor electrodynamics

Stephen L. Adler
- 25 Jan 1969 - 
- Vol. 177, Iss: 5, pp 2426-2438
TLDR
In this article, the axial-vector vertex in spinor electrodynamics has anomalous properties which differ with those found by the formal manipulation of field equations, and the divergence of axial vector current is not the usual expression calculated from the field equations.
Abstract
Working within the framework of perturbation theory, we show that the axial-vector vertex in spinor electrodynamics has anomalous properties which disagree with those found by the formal manipulation of field equations. Specifically, because of the presence of closed-loop "triangle diagrams," the divergence of axial-vector current is not the usual expression calculated from the field equations, and the axial-vector current does not satisfy the usual Ward identity. One consequence is that, even after the external-line wave-function renormalizations are made, the axial-vector vertex is still divergent in fourth- (and higher-) order perturbation theory. A corollary is that the radiative corrections to ${\ensuremath{\nu}}_{l}l$ elastic scattering in the local current-current theory diverge in fourth (and higher) order. A second consequence is that, in massless electrodynamics, despite the fact that the theory is invariant under ${\ensuremath{\gamma}}_{5}$ tranformations, the axial-vector current is not conserved. In an Appendix we demonstrate the uniqueness of the triangle diagrams, and discuss a possible connection between our results and the ${\ensuremath{\pi}}^{0}\ensuremath{\rightarrow}2\ensuremath{\gamma}$ and $\ensuremath{\eta}\ensuremath{\rightarrow}2\ensuremath{\gamma}$ decays. In particular, we argue that as a result of triangle diagrams, the equations expressing partial conservation of axial-vector current (PCAC) for the neutral members of the axial-vector-current octet must be modified in a well-defined manner, which completely alters the PCAC predictions for the ${\ensuremath{\pi}}^{0}$ and the $\ensuremath{\eta}$ two-photon decays.

read more

Citations
More filters
Journal ArticleDOI

Review of Particle Physics

Claude Amsler, +176 more
- 01 Jul 1996 - 
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.
Journal ArticleDOI

QCD and resonance physics. theoretical foundations

TL;DR: In this paper, a systematic study is made of the non-perturbative effects in quantum chromodynamics, where the basic object is the two-point functions of various currents and the terms of this series are shown to be of two distinct types.
Journal ArticleDOI

Regularization and Renormalization of Gauge Fields

TL;DR: In this article, a new regularization and renormalization procedure for gauge theories is presented, which is particularly well suited for the treatment of gauge theories and is transparent when anomalies such as the Bell-Jackiw-Adler anomaly may occur.
Journal ArticleDOI

Weyl and Dirac semimetals in three-dimensional solids

TL;DR: Weyl and Dirac semimetals as discussed by the authors are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry, and they have generated much recent interest.
Journal ArticleDOI

Chiral perturbation theory to one loop

TL;DR: In this article, the low energy representation of several Green's functions and form factors and of the na scattering amplitude are calculated in terms of a few constants, which may be identified with the coupling constants of a unique effective low energy Lagrangian.