scispace - formally typeset
Journal ArticleDOI

β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression

TLDR
Using a blinded screen of 1,040 FDA-approved drugs and nutritionals, it is discovered that many β-lactam antibiotics are potent stimulators of GLT1 expression, and this action appears to be mediated through increased transcription of theGLT1 gene.
Abstract
Glutamate is the principal excitatory neurotransmitter in the nervous system. Inactivation of synaptic glutamate is handled by the glutamate transporter GLT1 (also known as EAAT2; refs 1, 2), the physiologically dominant astroglial protein. In spite of its critical importance in normal and abnormal synaptic activity, no practical pharmaceutical can positively modulate this protein. Animal studies show that the protein is important for normal excitatory synaptic transmission, while its dysfunction is implicated in acute and chronic neurological disorders, including amyotrophic lateral sclerosis (ALS), stroke, brain tumours and epilepsy. Using a blinded screen of 1,040 FDA-approved drugs and nutritionals, we discovered that many beta-lactam antibiotics are potent stimulators of GLT1 expression. Furthermore, this action appears to be mediated through increased transcription of the GLT1 gene. beta-Lactams and various semi-synthetic derivatives are potent antibiotics that act to inhibit bacterial synthetic pathways. When delivered to animals, the beta-lactam ceftriaxone increased both brain expression of GLT1 and its biochemical and functional activity. Glutamate transporters are important in preventing glutamate neurotoxicity. Ceftriaxone was neuroprotective in vitro when used in models of ischaemic injury and motor neuron degeneration, both based in part on glutamate toxicity. When used in an animal model of the fatal disease ALS, the drug delayed loss of neurons and muscle strength, and increased mouse survival. Thus these studies provide a class of potential neurotherapeutics that act to modulate the expression of glutamate neurotransmitter transporters via gene activation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Astrocytes: biology and pathology

TL;DR: Astrocyte functions in healthy CNS, mechanisms and functions of reactive astrogliosis and glial scar formation, and ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions are reviewed.
Journal ArticleDOI

The Pharmacological Basis of Therapeutics

J. H. Gaddum
- 01 Dec 1941 - 
TL;DR: The Pharmacological Basis of Therapeutics, by Prof. Louis Goodman and Prof. Alfred Gilman, New York: The Macmillan Company, 1941, p.
Journal ArticleDOI

Molecular dissection of reactive astrogliosis and glial scar formation.

TL;DR: Developments in the signaling mechanisms that regulate specific aspects of reactive astrogliosis are reviewed and the potential to identify novel therapeutic molecular targets for diverse neurological disorders is highlighted.
Journal ArticleDOI

Astrocytes, from brain glue to communication elements: the revolution continues.

TL;DR: The recent recognition that astrocytes are organized in separate territories and possess active properties — notably a competence for the regulated release of 'gliotransmitters', including glutamate — has enabled us to develop an understanding of previously unknown functions for astroCytes.
Journal ArticleDOI

ALS: a disease of motor neurons and their nonneuronal neighbors.

TL;DR: In this paper, a mutant superoxide dismutase (SOD1) was found to induce non-cell-autonomous motor neuron killing by an unknown gain of toxicity.
References
More filters
Journal ArticleDOI

The Pharmacological Basis of Therapeutics

J. H. Gaddum
- 01 Dec 1941 - 
TL;DR: The Pharmacological Basis of Therapeutics, by Prof. Louis Goodman and Prof. Alfred Gilman, New York: The Macmillan Company, 1941, p.
Journal ArticleDOI

Knockout of Glutamate Transporters Reveals a Major Role for Astroglial Transport in Excitotoxicity and Clearance of Glutamate

TL;DR: It is suggested that glial glutamate transporters provide the majority of functional glutamate transport and are essential for maintaining low extracellular glutamate and for preventing chronic glutamate neurotoxicity.
Journal ArticleDOI

Epilepsy and Exacerbation of Brain Injury in Mice Lacking the Glutamate Transporter GLT-1

TL;DR: Homozygous mice deficient in GLT-1, a widely distributed astrocytic glutamate transporter, show lethal spontaneous seizures and increased susceptibility to acute cortical injury, which can be attributed to elevated levels of residual glutamate in the brains of these mice.
Journal ArticleDOI

Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis.

TL;DR: Developing C‐terminal, antioligopeptide antibodies that were specific for each glutamate transporter subtype found that GLT‐1 immunoreactive protein was severely decreased in ALS, both in motor cortex (71% decrease compared with control) and in spinal cord.
Related Papers (5)