scispace - formally typeset
Open AccessJournal ArticleDOI

Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review.

Tushar Kanti Bera
- Vol. 2014, pp 381251-381251
TLDR
The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends.
Abstract
Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Bioelectrical Impedance Analysis for Evaluation of Body Composition: A Review

TL;DR: In this article, a review of various compartments models of body composition is presented, and theoretical procedures of various models of BIA are briefly described and briefly theoretical procedures are briefly discussed.
Journal ArticleDOI

Assessment of changes in muscle mass, strength, and quality and activities of daily living in elderly stroke patients

TL;DR: In this paper , the authors examined the changes in muscle strength, muscle mass, and muscle quality in patients undergoing poststroke rehabilitation and assessed the relationship of these variables with improvement in activities of daily living (ADL).
Journal ArticleDOI

Molecular Mechanisms and Treatment of Sarcopenia in Liver Disease: A Review of Current Knowledge

TL;DR: Sarcopenia is characterized by progressive and generalized loss of skeletal muscle mass and strength that occurs with aging or in association with various diseases The condition is prevalent worldwide and occurs more frequently in patients with chronic diseases owing to the intrinsic relationship of muscles with glucose, lipid, and protein metabolism as mentioned in this paper.
Journal ArticleDOI

Development of Bio-impedance Analyzer (BIA) for Body Fat Calculation

TL;DR: In this paper, the authors proposed a bio-impedance analysis (BIA) tool capable to body composition assessment, which uses four electrodes, two of which are used for 50 kHz sine wave current flow to the body and the rest are used to measure the voltage produced by the body for impedance analysis.
Journal ArticleDOI

Effects of the COVID-19 pandemic on the global health of women aged 50 to 70 years.

TL;DR: In this paper, the effect of the COVID-19 pandemic on health-related parameters of physically inactive women aged 50 to 70 years was evaluated, and the results showed that the pandemic negatively impacted the general health status of physically active women, potentially increasing their susceptibility to comorbidities such as type 2 diabetes and hypertriglyceridemia.
References
More filters
Book

Modern Aspects of Electrochemistry

TL;DR: In this paper, the authors focus on topics at the forefront of electrochemical research, such as splitting water by electrolysis, splitting water with visible light, and the recent development of lithium batteries.
BookDOI

Impedance spectroscopy : theory, experiment, and applications

Abstract: Preface. Preface to the First Edition. Contributors. Contributors to the First Edition. Chapter 1. Fundamentals of Impedance Spectroscopy (J.Ross Macdonald and William B. Johnson). 1.1. Background, Basic Definitions, and History. 1.1.1 The Importance of Interfaces. 1.1.2 The Basic Impedance Spectroscopy Experiment. 1.1.3 Response to a Small-Signal Stimulus in the Frequency Domain. 1.1.4 Impedance-Related Functions. 1.1.5 Early History. 1.2. Advantages and Limitations. 1.2.1 Differences Between Solid State and Aqueous Electrochemistry. 1.3. Elementary Analysis of Impedance Spectra. 1.3.1 Physical Models for Equivalent Circuit Elements. 1.3.2 Simple RC Circuits. 1.3.3 Analysis of Single Impedance Arcs. 1.4. Selected Applications of IS. Chapter 2. Theory (Ian D. Raistrick, Donald R. Franceschetti, and J. Ross Macdonald). 2.1. The Electrical Analogs of Physical and Chemical Processes. 2.1.1 Introduction. 2.1.2 The Electrical Properties of Bulk Homogeneous Phases. 2.1.2.1 Introduction. 2.1.2.2 Dielectric Relaxation in Materials with a Single Time Constant. 2.1.2.3 Distributions of Relaxation Times. 2.1.2.4 Conductivity and Diffusion in Electrolytes. 2.1.2.5 Conductivity and Diffusion-a Statistical Description. 2.1.2.6 Migration in the Absence of Concentration Gradients. 2.1.2.7 Transport in Disordered Media. 2.1.3 Mass and Charge Transport in the Presence of Concentration Gradients. 2.1.3.1 Diffusion. 2.1.3.2 Mixed Electronic-Ionic Conductors. 2.1.3.3 Concentration Polarization. 2.1.4 Interfaces and Boundary Conditions. 2.1.4.1 Reversible and Irreversible Interfaces. 2.1.4.2 Polarizable Electrodes. 2.1.4.3 Adsorption at the Electrode-Electrolyte Interface. 2.1.4.4 Charge Transfer at the Electrode-Electrolyte Interface. 2.1.5 Grain Boundary Effects. 2.1.6 Current Distribution, Porous and Rough Electrodes- the Effect of Geometry. 2.1.6.1 Current Distribution Problems. 2.1.6.2 Rough and Porous Electrodes. 2.2. Physical and Electrochemical Models. 2.2.1 The Modeling of Electrochemical Systems. 2.2.2 Equivalent Circuits. 2.2.2.1 Unification of Immitance Responses. 2.2.2.2 Distributed Circuit Elements. 2.2.2.3 Ambiguous Circuits. 2.2.3 Modeling Results. 2.2.3.1 Introduction. 2.2.3.2 Supported Situations. 2.2.3.3 Unsupported Situations: Theoretical Models. 2.2.3.4 Unsupported Situations: Equivalent Network Models. 2.2.3.5 Unsupported Situations: Empirical and Semiempirical Models. Chapter 3. Measuring Techniques and Data Analysis. 3.1. Impedance Measurement Techniques (Michael C. H. McKubre and Digby D. Macdonald). 3.1.1 Introduction. 3.1.2 Frequency Domain Methods. 3.1.2.1 Audio Frequency Bridges. 3.1.2.2 Transformer Ratio Arm Bridges. 3.1.2.3 Berberian-Cole Bridge. 3.1.2.4 Considerations of Potentiostatic Control. 3.1.2.5 Oscilloscopic Methods for Direct Measurement. 3.1.2.6 Phase-Sensitive Detection for Direct Measurement. 3.1.2.7 Automated Frequency Response Analysis. 3.1.2.8 Automated Impedance Analyzers. 3.1.2.9 The Use of Kramers-Kronig Transforms. 3.1.2.10 Spectrum Analyzers. 3.1.3 Time Domain Methods. 3.1.3.1 Introduction. 3.1.3.2 Analog-to-Digital (A/D) Conversion. 3.1.3.3 Computer Interfacing. 3.1.3.4 Digital Signal Processing. 3.1.4 Conclusions. 3.2. Commercially Available Impedance Measurement Systems (Brian Sayers). 3.2.1 Electrochemical Impedance Measurement Systems. 3.2.1.1 System Configuration. 3.2.1.2 Why Use a Potentiostat? 3.2.1.3 Measurements Using 2, 3 or 4-Terminal Techniques. 3.2.1.4 Measurement Resolution and Accuracy. 3.2.1.5 Single Sine and FFT Measurement Techniques. 3.2.1.6 Multielectrode Techniques. 3.2.1.7 Effects of Connections and Input Impedance. 3.2.1.8 Verification of Measurement Performance. 3.2.1.9 Floating Measurement Techniques. 3.2.1.10 Multichannel Techniques. 3.2.2 Materials Impedance Measurement Systems. 3.2.2.1 System Configuration. 3.2.2.2 Measurement of Low Impedance Materials. 3.2.2.3 Measurement of High Impedance Materials. 3.2.2.4 Reference Techniques. 3.2.2.5 Normalization Techniques. 3.2.2.6 High Voltage Measurement Techniques. 3.2.2.7 Temperature Control. 3.2.2.8 Sample Holder Considerations. 3.3. Data Analysis (J. Ross Macdonald). 3.3.1 Data Presentation and Adjustment. 3.3.1.1 Previous Approaches. 3.3.1.2 Three-Dimensional Perspective Plotting. 3.3.1.3 Treatment of Anomalies. 3.3.2 Data Analysis Methods. 3.3.2.1 Simple Methods. 3.3.2.2 Complex Nonlinear Least Squares. 3.3.2.3 Weighting. 3.3.2.4 Which Impedance-Related Function to Fit? 3.3.2.5 The Question of "What to Fit" Revisited. 3.3.2.6 Deconvolution Approaches. 3.3.2.7 Examples of CNLS Fitting. 3.3.2.8 Summary and Simple Characterization Example. Chapter 4. Applications of Impedance Spectroscopy. 4.1. Characterization of Materials (N. Bonanos, B. C. H. Steele, and E. P. Butler). 4.1.1 Microstructural Models for Impedance Spectra of Materials. 4.1.1.1 Introduction. 4.1.1.2 Layer Models. 4.1.1.3 Effective Medium Models. 4.1.1.4 Modeling of Composite Electrodes. 4.1.2 Experimental Techniques. 4.1.2.1 Introduction. 4.1.2.2 Measurement Systems. 4.1.2.3 Sample Preparation-Electrodes. 4.1.2.4 Problems Associated With the Measurement of Electrode Properties. 4.1.3 Interpretation of the Impedance Spectra of Ionic Conductors and Interfaces. 4.1.3.1 Introduction. 4.1.3.2 Characterization of Grain Boundaries by IS. 4.1.3.3 Characterization of Two-Phase Dispersions by IS. 4.1.3.4 Impedance Spectra of Unusual Two-phase Systems. 4.1.3.5 Impedance Spectra of Composite Electrodes. 4.1.3.6 Closing Remarks. 4.2. Characterization of the Electrical Response of High Resistivity Ionic and Dielectric Solid Materials by Immittance Spectroscopy (J. Ross Macdonald). 4.2.1 Introduction. 4.2.2 Types of Dispersive Response Models: Strengths and Weaknesses. 4.2.2.1 Overview. 4.2.2.2 Variable-slope Models. 4.2.2.3 Composite Models. 4.2.3 Illustration of Typical Data Fitting Results for an Ionic Conductor. 4.3. Solid State Devices (William B. Johnson and Wayne L. Worrell). 4.3.1 Electrolyte-Insulator-Semiconductor (EIS) Sensors. 4.3.2 Solid Electrolyte Chemical Sensors. 4.3.3 Photoelectrochemical Solar Cells. 4.3.4 Impedance Response of Electrochromic Materials and Devices (Gunnar A. Niklasson, Anna Karin Johsson, and Maria Stromme). 4.3.4.1 Introduction. 4.3.4.2 Materials. 4.3.4.3 Experimental Techniques. 4.3.4.4 Experimental Results on Single Materials. 4.3.4.5 Experimental Results on Electrochromic Devices. 4.3.4.6 Conclusions and Outlook. 4.3.5 Time-Resolved Photocurrent Generation (Albert Goossens). 4.3.5.1 Introduction-Semiconductors. 4.3.5.2 Steady-State Photocurrents. 4.3.5.3 Time-of-Flight. 4.3.5.4 Intensity-Modulated Photocurrent Spectroscopy. 4.3.5.5 Final Remarks. 4.4. Corrosion of Materials (Digby D. Macdonald and Michael C. H. McKubre). 4.4.1 Introduction. 4.4.2 Fundamentals. 4.4.3 Measurement of Corrosion Rate. 4.4.4 Harmonic Analysis. 4.4.5 Kramer-Kronig Transforms. 4.4.6 Corrosion Mechanisms. 4.4.6.1 Active Dissolution. 4.4.6.2 Active-Passive Transition. 4.4.6.3 The Passive State. 4.4.7 Point Defect Model of the Passive State (Digby D. Macdonald). 4.4.7.1 Introduction. 4.4.7.2 Point Defect Model. 4.4.7.3 Electrochemical Impedance Spectroscopy. 4.4.7.4 Bilayer Passive Films. 4.4.8 Equivalent Circuit Analysis (Digby D. Macdonald and Michael C. H. McKubre). 4.4.8.1 Coatings. 4.4.9 Other Impedance Techniques. 4.4.9.1 Electrochemical Hydrodynamic Impedance (EHI). 4.4.9.2 Fracture Transfer Function (FTF). 4.4.9.3 Electrochemical Mechanical Impedance. 4.5. Electrochemical Power Sources. 4.5.1 Special Aspects of Impedance Modeling of Power Sources (Evgenij Barsoukov). 4.5.1.1 Intrinsic Relation Between Impedance Properties and Power Sources Performance. 4.5.1.2 Linear Time-Domain Modeling Based on Impedance Models, Laplace Transform. 4.5.1.3 Expressing Model Parameters in Electrical Terms, Limiting Resistances and Capacitances of Distributed Elements. 4.5.1.4 Discretization of Distributed Elements, Augmenting Equivalent Circuits. 4.5.1.5 Nonlinear Time-Domain Modeling of Power Sources Based on Impedance Models. 4.5.1.6 Special Kinds of Impedance Measurement Possible with Power Sources-Passive Load Excitation and Load Interrupt. 4.5.2 Batteries (Evgenij Barsoukov). 4.5.2.1 Generic Approach to Battery Impedance Modeling. 4.5.2.2 Lead Acid Batteries. 4.5.2.3 Nickel Cadmium Batteries. 4.5.2.4 Nickel Metal-hydride Batteries. 4.5.2.5 Li-ion Batteries. 4.5.3 Impedance Behavior of Electrochemical Supercapacitors and Porous Electrodes (Brian E. Conway). 4.5.3.1 Introduction. 4.5.3.2 The Time Factor in Capacitance Charge or Discharge. 4.5.3.3 Nyquist (or Argand) Complex-Plane Plots for Representation of Impedance Behavior. 4.5.3.4 Bode Plots of Impedance Parameters for Capacitors. 4.5.3.5 Hierarchy of Equivalent Circuits and Representation of Electrochemical Capacitor Behavior. 4.5.3.6 Impedance and Voltammetry Behavior of Brush Electrode Models of Porous Electrodes. 4.5.3.7 Impedance Behavior of Supercapacitors Based on Pseudocapacitance. 4.5.3.8 Deviations of Double-layer Capacitance from Ideal Behavior: Representation by a Constant-phase Element (CPE). 4.5.4 Fuel Cells (Norbert Wagner). 4.5.4.1 Introduction. 4.5.4.2 Alkaline Fuel Cells (AFC). 4.5.4.3 Polymer Electrolyte Fuel Cells (PEFC). 4.5.4.4 Solid Oxide Fuel Cells (SOFC). Appendix. Abbreviations and Definitions of Models. References. Index.
Journal ArticleDOI

Atmospheric pollution profiles in Mexico City in two different seasons

TL;DR: In this article, a CO2-laser-based photoacoustic spectrometer was used to determine the temporal concentration profile of atmospheric ethene in Mexico City, and the results of this campaign were compared with data obtained in the winter of 2001.
Journal ArticleDOI

Changes in portlandite morphology with solvent composition: Atomistic simulations and experiment

TL;DR: In this article, a new analysis tool was developed to quantify the experimentally observed changes in morphology of portlandite, allowing the calculation of the relative surface energies of the crystal facets.
Related Papers (5)