scispace - formally typeset
Open AccessJournal ArticleDOI

Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review.

Tushar Kanti Bera
- Vol. 2014, pp 381251-381251
TLDR
The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends.
Abstract
Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

Introduction to the Finite Element Method

TL;DR: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems and discusses the main points in the application to electromagnetic design, including formulation and implementation.
Journal ArticleDOI

Wearable sensors: modalities, challenges, and prospects

TL;DR: A deeper understanding of the fundamental challenges faced for wearable sensors and of the state-of-the-art for wearable sensor technology, the roadmap becomes clearer for creating the next generation of innovations and breakthroughs.
Journal ArticleDOI

Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review

TL;DR: In this article, an updated review of EIS main implementations and applications is presented, as well as a broad range of applications as a quick and easily automated technique to characterize solid, liquid, semiliquid, organic as well and inorganic materials.
Journal ArticleDOI

Fundamentals, Recent Advances, and Future Challenges in Bioimpedance Devices for Healthcare Applications

TL;DR: The basis and fundamentals of bioimpedance measurements are described covering issues ranging from the hardware diagrams to the configurations and designs of the electrodes and from the mathematical models that describe the frequency behavior of the bioimpingance to the sources of noise and artifacts.
References
More filters
PatentDOI

Applied potential tomography

TL;DR: In this paper, the surface contact electrodes are located in a closed loop or rosette array on one planar or nominally planar, skin surface of a body to be investigated, and electrically connected to data acquisition and processing equipment.
Journal ArticleDOI

Electrical impedance tomography

TL;DR: In this article, the authors review theoretical and numerical studies of the inverse problem of electrical impedance tomography, which seeks the electrical conductivity and permittivity inside a body, given simultaneous measurements of electrical currents and potentials at the boundary.
Journal ArticleDOI

Comparing Reconstruction Algorithms for Electrical Impedance Tomography

TL;DR: An improved electrical impedance tomographic reconstruction algorithm is presented that is generally guaranteed to converge and provides significantly better reconstructions than any of the other methods.
Journal ArticleDOI

Bioelectrical Impedance Analysis: A Review of Principles and Applications

TL;DR: The principles, underlying assumptions, clinical applications and future directions of the BIA method are reviewed.
Related Papers (5)