scispace - formally typeset
Journal ArticleDOI

Carbon nanomaterials for non-volatile memories

TLDR
Carbon nanomaterials have greatly advanced nonvolatile memory technology as mentioned in this paper, including memory electrodes, interfacial engineering layers, memory selectors and resistive-switching media.
Abstract
Carbon nanomaterials have greatly advanced non-volatile memory technology. In this Review, applications of various carbon nanomaterials as memory electrodes, interfacial engineering layers, memory selectors and resistive-switching media are discussed in the context of emerging non-volatile memory devices.

read more

Citations
More filters
Journal ArticleDOI

Designing crystallization in phase-change materials for universal memory and neuro-inspired computing

TL;DR: This Review focuses on the crystallization mechanisms of PCMs as well as the design principles to achieve PCMs with high switching speeds and good data retention, which will aid the development of PCM-based universal memory and neuro-inspired devices.
Journal ArticleDOI

2D materials for spintronic devices

TL;DR: This review discusses various 2D materials, including graphene and other inorganic 2D semiconductors, in the context of scientific and technological advances in spintronic devices and introduces the spin-orbit and spin-valley coupled properties of 2D material to explore their potential to address the crucial issues of contemporary electronics.
Journal ArticleDOI

Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems

TL;DR: This work focuses on the development of nonvolatile memories and neuromorphic computing systems based on QD thin-film solids and discusses the advantageous traits of QDs for novel and optimized memory techniques in both conventional flash memories and emerging memristors.
Journal Article

Black Phosphorus Field-effect Transistors

TL;DR: In this paper, a few-layer black phosphorus crystals with thickness down to a few nanometres are used to construct field effect transistors for nanoelectronic devices. But the performance of these materials is limited.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Journal ArticleDOI

Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide

TL;DR: In this paper, a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate results in their aggregation and subsequent formation of a high surface area carbon material which consists of thin graphene-based sheets.
Journal ArticleDOI

Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils

TL;DR: It is shown that graphene grows in a self-limiting way on copper films as large-area sheets (one square centimeter) from methane through a chemical vapor deposition process, and graphene film transfer processes to arbitrary substrates showed electron mobilities as high as 4050 square centimeters per volt per second at room temperature.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Related Papers (5)