scispace - formally typeset
Open AccessJournal ArticleDOI

Drought and host selection influence bacterial community dynamics in the grass root microbiome.

Reads0
Chats0
TLDR
It is shown that there is a strong correlation between host phylogenetic distance and the microbiome dissimilarity within root tissues, and that drought weakens this correlation by inducing conserved shifts in bacterial community composition.
Abstract
Root endophytes have been shown to have important roles in determining host fitness under periods of drought stress, and yet the effect of drought on the broader root endosphere bacterial community remains largely uncharacterized. In this study, we present phylogenetic profiles of bacterial communities associated with drought-treated root and rhizosphere tissues of 18 species of plants with varying degrees of drought tolerance belonging to the Poaceae family, including important crop plants. Through 16S rRNA gene profiling across two distinct watering regimes and two developmental time points, we demonstrate that there is a strong correlation between host phylogenetic distance and the microbiome dissimilarity within root tissues, and that drought weakens this correlation by inducing conserved shifts in bacterial community composition. We identify a significant enrichment in a wide variety of Actinobacteria during drought within the roots of all hosts, and demonstrate that this enrichment is higher within the root than it is in the surrounding environments. Furthermore, we show that this observed enrichment is the result of an absolute increase in Actinobacterial abundance and that previously hypothesized mechanisms for observed enrichments in Actinobacteria in drought-treated soils are unlikely to fully account for the phenomena observed here within the plant root.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Assembly and ecological function of the root microbiome across angiosperm plant species.

TL;DR: It is demonstrated that variation among 30 angiosperm species, which have diverged for up to 140 million years, affects root bacterial diversity and composition and the causes of variation in root microbiomes are emphasized.
Journal ArticleDOI

Soil microbiomes and climate change

TL;DR: The current state of knowledge about the impacts of climate change on soil microorganisms in different climate-sensitive soil ecosystems, as well as potential ways that soil micro organisms can be harnessed to help mitigate the negative consequences of climatechange are explored.
Journal ArticleDOI

Harnessing rhizosphere microbiomes for drought-resilient crop production

TL;DR: The need for improved mechanistic understanding of the complex feedbacks between plants and microbes during, and particularly after, drought is highlighted and is central to making crop production more resilient to the authors' future climate.
Journal ArticleDOI

Drought Stress and Root-Associated Bacterial Communities.

TL;DR: A synthesis of observed trends in recent studies is provided and possible directions for future research are discussed that are hoped will provide for more knowledgeable predictions about community responses to future drought events.
References
More filters
Journal ArticleDOI

The SILVA ribosomal RNA gene database project: improved data processing and web-based tools

TL;DR: The extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.
Journal ArticleDOI

Species assemblages and indicator species:the need for a flexible asymmetrical approach

TL;DR: A new and simple method to find indicator species and species assemblages characterizing groups of sites, and a new way to present species-site tables, accounting for the hierarchical relationships among species, is proposed.
Journal Article

The structure and function

TL;DR: This stately book is to show how the various types of animals have solved the fundamental problems of life, and how their struc-ture is to be interpreted in terms of their functions and environment.
Journal ArticleDOI

The rhizosphere microbiome and plant health

TL;DR: In this article, the authors discuss evidence that upon pathogen or insect attack, plants are able to recruit protective microorganisms, and enhance microbial activity to suppress pathogens in the rhizosphere.
Journal ArticleDOI

Going back to the roots: the microbial ecology of the rhizosphere.

TL;DR: Recent developments in rhizosphere research are discussed in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.
Related Papers (5)