scispace - formally typeset
Open AccessJournal ArticleDOI

Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell

TLDR
Benefiting from structure functionalities and electronic control of a single-atom iron active center, the catalyst shows a remarkable performance with enhanced kinetics and activity for oxygen reduction in both alkaline and acid media and shows promise for substitution of expensive platinum to drive the cathodic oxygen reduction reaction in zinc-air batteries and hydrogen-air fuel cells.
Abstract
Efficient, durable and inexpensive electrocatalysts that accelerate sluggish oxygen reduction reaction kinetics and achieve high-performance are highly desirable. Here we develop a strategy to fabricate a catalyst comprised of single iron atomic sites supported on a nitrogen, phosphorus and sulfur co-doped hollow carbon polyhedron from a metal-organic framework@polymer composite. The polymer-based coating facilitates the construction of a hollow structure via the Kirkendall effect and electronic modulation of an active metal center by long-range interaction with sulfur and phosphorus. Benefiting from structure functionalities and electronic control of a single-atom iron active center, the catalyst shows a remarkable performance with enhanced kinetics and activity for oxygen reduction in both alkaline and acid media. Moreover, the catalyst shows promise for substitution of expensive platinum to drive the cathodic oxygen reduction reaction in zinc-air batteries and hydrogen-air fuel cells.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions

TL;DR: A wide range of applications based on these materials for ORR, OER, HER and multifunctional electrocatalysis are discussed, with an emphasis on the required features of MOF-derived carbon-based materials for the Electrocatalysis of corresponding reactions.
Journal ArticleDOI

Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites.

TL;DR: The roles of nanoparticles and isolated single atom sites in catalytic reactions are surveyed and the challenges and opportunities of well-defined materials for catalyst development are highlighted, gaining a fundamental understanding of their active sites.
Journal ArticleDOI

Chemical Synthesis of Single Atomic Site Catalysts.

TL;DR: In this review, various synthetic strategies for the synthesis of SASC are summarized with concrete examples highlighting the key issues of the synthesis methods to stabilize single metal atoms on supports and to suppress their migration and agglomeration.
Journal ArticleDOI

Metal-Organic Framework-Based Catalysts with Single Metal Sites.

TL;DR: This review overviews the recent developments of catalysis at single metal sites in MOF-based materials with emphasis on their structures and applications for thermocatalysis, electrocatalysis, and photocatalysis.
Journal ArticleDOI

Tuning the Coordination Environment in Single-Atom Catalysts to Achieve Highly Efficient Oxygen Reduction Reactions.

TL;DR: Insight is provided into the rational design of the definitive structure of single-atom catalysts with tunable electrocatalytic activities for efficient energy conversion and Fe-SAs/NSC exhibits the highest of all, which is even better than commercial Pt/C.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set

TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.
Journal ArticleDOI

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode

TL;DR: In this paper, the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations was analyzed and a detailed description of the free energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias was presented.
Journal ArticleDOI

Combining theory and experiment in electrocatalysis: Insights into materials design

TL;DR: A unified theoretical framework highlights the need for catalyst design strategies that selectively stabilize distinct reaction intermediates relative to each other, and opens up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions.
Related Papers (5)