scispace - formally typeset
Open AccessJournal ArticleDOI

From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey

TLDR
In this article, integral field spectroscopy of well-resolved, UV/optically selected z ~ 2 star-forming galaxies as part of the SINS survey with SINFONI on the ESO VLT is presented.
Abstract
We present Hα integral field spectroscopy of well-resolved, UV/optically selected z ~ 2 star-forming galaxies as part of the SINS survey with SINFONI on the ESO VLT. Our laser guide star adaptive optics and good seeing data show the presence of turbulent rotating star-forming outer rings/disks, plus central bulge/inner disk components, whose mass fractions relative to the total dynamical mass appear to scale with the [N II]/Hα flux ratio and the star formation age. We propose that the buildup of the central disks and bulges of massive galaxies at z ~ 2 can be driven by the early secular evolution of gas-rich proto-disks. High-redshift disks exhibit large random motions. This turbulence may in part be stirred up by the release of gravitational energy in the rapid "cold" accretion flows along the filaments of the cosmic web. As a result, dynamical friction and viscous processes proceed on a timescale of <1 Gyr, at least an order of magnitude faster than in z ~ 0 disk galaxies. Early secular evolution thus drives gas and stars into the central regions and can build up exponential disks and massive bulges, even without major mergers. Secular evolution along with increased efficiency of star formation at high surface densities may also help to account for the short timescales of the stellar buildup observed in massive galaxies at z ~ 2.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies

TL;DR: In this paper, supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics, and it has been shown that BHs and bulges coevolve by regulating each other's growth.
Journal ArticleDOI

Star Formation in the Milky Way and Nearby Galaxies

TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Journal ArticleDOI

Observational Evidence of Active Galactic Nuclei Feedback

TL;DR: In this article, it was shown that the radiative or quasar mode of feedback can account for the observed proportionality between the central black hole and the host galaxy mass, which can lead to ejection or heating of the gas.
Journal ArticleDOI

Candels: The cosmic assembly near-infrared deep extragalactic legacy survey - The hubble space telescope observations, imaging data products, and mosaics

Anton M. Koekemoer, +124 more
TL;DR: In this paper, the authors describe the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS).
Journal ArticleDOI

Mass and environment as drivers of galaxy evolution in SDSS and zCOSMOS and the origin of the Schechter function

TL;DR: In this paper, the authors explore the simple interrelationships between mass, star formation rate, and environment in the SDSS, zCOSMOS, and other deep surveys.
References
More filters
Journal ArticleDOI

A Universal Density Profile from Hierarchical Clustering

TL;DR: In this article, the authors used high-resolution N-body simulations to study the equilibrium density profiles of dark matter halos in hierarchically clustering universes, and they found that all such profiles have the same shape, independent of the halo mass, the initial density fluctuation spectrum, and the values of the cosmological parameters.
Journal ArticleDOI

Galactic stellar and substellar initial mass function

TL;DR: A review of the present-day mass function and initial mass function in various components of the Galaxy (disk, spheroid, young, and globular clusters) and in conditions characteristic of early star formation is presented in this paper.
Journal ArticleDOI

The Global Schmidt law in star forming galaxies

TL;DR: In this paper, the Schmidt law was used to model the global star formation law over the full range of gas densities and star formation rates observed in galaxies, and the results showed that the SFR scales with the ratio of the gas density to the average orbital timescale.
Journal ArticleDOI

The Global Schmidt Law in Star Forming Galaxies

TL;DR: In this paper, the Schmidt law was used to model the global star formation law, over the full range of gas densities and star formation rates (SFRs) observed in galaxies.
Related Papers (5)