scispace - formally typeset
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TLDR
In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract
The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.

read more

Citations
More filters
Journal ArticleDOI

Native point defects in ZnO

TL;DR: In this paper, the authors performed a comprehensive first-principles investigation of point defects in ZnO based on density functional theory within the local density approximation (LDA) as well as the $\mathrm{LDA}+U$ approach for overcoming the band-gap problem.
Journal ArticleDOI

Chemical accuracy for the van der Waals density functional

TL;DR: It is shown here that the accuracy of vdW-DF can be dramatically improved both for dispersion and hydrogen bonded complexes through the judicious selection of its underlying exchange functional.
Book

Electronic Structure: Basic Theory and Practical Methods

TL;DR: In this paper, the Kohn-Sham ansatz is used to solve the problem of determining the electronic structure of atoms, and the three basic methods for determining electronic structure are presented.
Journal ArticleDOI

Ab-initio simulations of materials using VASP: Density-functional theory and beyond.

TL;DR: The implementation of various DFT functionals and many‐body techniques within highly efficient, stable, and versatile computer codes, which allow to exploit the potential of modern computer architectures are discussed.
Journal ArticleDOI

Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution

TL;DR: This work demonstrates the successfully synergistic regulations of both structural and electronic benefits by controllable disorder engineering and simultaneous oxygen incorporation in MoS2 catalysts, leading to the dramatically enhanced HER activity.
References
More filters
Book

Planewaves, Pseudopotentials, and the LAPW Method

TL;DR: The linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged.
Related Papers (5)