scispace - formally typeset
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TLDR
In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract
The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.

read more

Citations
More filters
Journal ArticleDOI

Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides.

TL;DR: The theoretical defect model for In(2)O(3) and ZnO finds that intrinsic acceptors have a high Delta H explaining high n-dopability, and the O vacancy V(O) has a metastable shallow state, explaining the paradoxical coexistence of coloration and conductivity.
Journal ArticleDOI

Density functional theory for transition metals and transition metal chemistry

TL;DR: In this article, the authors introduce density functional theory and review recent progress in its application to transition metal chemistry, including local, meta, hybrid, hybrid meta, and range-separated functionals, band theory, software, validation tests, and applications to spin states, magnetic exchange coupling, spectra, structure, reactivity, and solids.
Journal ArticleDOI

Gate-tunable room-temperature ferromagnetism in two-dimensional Fe 3 GeTe 2 .

TL;DR: It is found that the itinerant ferromagnetism persists in Fe3GeTe2 down to the monolayer with an out-of-plane magnetocrystalline anisotropy, which opens up opportunities for potential voltage-controlled magnetoelectronics based on atomically thin van der Waals crystals.
Journal ArticleDOI

Optimization methods for finding minimum energy paths.

TL;DR: If a highly accurate MEP is desired, it is found to be more efficient to descend from the saddle to the minima than to use a chain-of-states method with many images.
Journal ArticleDOI

Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways.

TL;DR: This work implements an implicit solvation model that has a firm theoretical foundation into the widely used density-functional code Vienna ab initio Software Package and finds that solvation reduces the surface energies of the nanocrystals and increases the energy barrier of the SN2 reaction.
References
More filters
Book

Planewaves, Pseudopotentials, and the LAPW Method

TL;DR: The linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged.
Related Papers (5)