scispace - formally typeset
Journal ArticleDOI

Future ocean acidification will be amplified by hypoxia in coastal habitats

TLDR
Coastal ocean acidification experimental designs need to be closely adjusted to carbonate system variability within the specific habitat, as the magnitude of expected changes in pCO2 in these regions indicates that coastal systems may be more endangered by future global climate change than previously thought.
Abstract
Ocean acidification is elicited by anthropogenic carbon dioxide emissions and resulting oceanic uptake of excess CO2 and might constitute an abiotic stressor powerful enough to alter marine ecosystem structures. For surface waters in gas-exchange equilibrium with the atmosphere, models suggest increases in CO2 partial pressure (pCO2) from current values of ca. 390 μatm to ca. 700–1,000 μatm by the end of the century. However, in typically unequilibrated coastal hypoxic regions, much higher pCO2 values can be expected, as heterotrophic degradation of organic material is necessarily related to the production of CO2 (i.e., dissolved inorganic carbon). Here, we provide data and estimates that, even under current conditions, maximum pCO2 values of 1,700–3,200 μatm can easily be reached when all oxygen is consumed at salinities between 35 and 20, respectively. Due to the nonlinear nature of the carbonate system, the approximate doubling of seawater pCO2 in surface waters due to ocean acidification will most strongly affect coastal hypoxic zones as pCO2 during hypoxia will increase proportionally: we calculate maximum pCO2 values of ca. 4,500 μatm at a salinity of 20 (T = 10 °C) and ca. 3,400 μatm at a salinity of 35 (T = 10 °C) when all oxygen is consumed. Upwelling processes can bring these CO2-enriched waters in contact with shallow water ecosystems and may then affect species performance there as well. We conclude that (1) combined stressor experiments (pCO2 and pO2) are largely missing at the moment and that (2) coastal ocean acidification experimental designs need to be closely adjusted to carbonate system variability within the specific habitat. In general, the worldwide spread of coastal hypoxic zones also simultaneously is a spread of CO2-enriched zones. The magnitude of expected changes in pCO2 in these regions indicates that coastal systems may be more endangered by future global climate change than previously thought.

read more

Citations
More filters
Journal ArticleDOI

Tidally-induced variations of pH at the head of the Laurentian Channel.

TL;DR: In this paper, a suite of physical and chemical variables was measured throughout the water column over two tidal cycles and the relative contributions of the four source-water types that converge in this region were evaluated using an optimum multiparameter algorithm (OMP).
Journal ArticleDOI

Changes to Intestinal Transport Physiology and Carbonate Production at Various CO2 Levels in a Marine Teleost, the Gulf Toadfish (Opsanus beta).

TL;DR: This study is among the first to thoroughly characterize how compensation for elevated CO2 affects transport physiology and carbonate production in the marine fish intestine and deeper understanding may be particularly relevant when considering the impacts of future predicted ocean acidification.
Journal ArticleDOI

Future warming and acidification effects on anti‐fouling and anti‐herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae)

TL;DR: In this article, the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers were tested using consecutive bioassays.
Journal ArticleDOI

Combined effects of short-term ocean acidification and heat shock in a benthic copepod Tigriopus japonicus Mori

TL;DR: The results demonstrate that T. japonicus responds more sensitively to heat shocks rather than to seawater acidification; however, ocean acidification may synergistically act with ocean warming to mediate the energy allocation of copepods.
Journal ArticleDOI

Ocean acidification changes the vertical movement of stone crab larvae

TL;DR: The reversal in orientation by Stage III larvae may limit larval transport in habitats that experience reduced pH and could pose challenges for the northward dispersal of stone crabs as coastal temperatures warm.
References
More filters

Climate change 2007: the physical science basis

TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Book

Climate change 2007 : the physical science basis : contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

Susan Solomon
TL;DR: In this article, the authors present a historical overview of climate change science, including changes in atmospheric constituents and radiative forcing, as well as changes in snow, ice, and frozen ground.
BookDOI

Methods of seawater analysis

TL;DR: The Automatic Determination of Dissolved Organic Carbon (DOC) by Wet Chemical Oxidation is described in this paper, along with the results of HPLC analysis of photosynthetic pigments.

Supporting Online Material for Spreading Dead Zones and Consequences for Marine Ecosystems

TL;DR: The formation of dead zones has been exacerbated by the increase in primary production and consequent worldwide coastal eutrophication fueled by riverine runoff of fertilizers and the burning of fossil fuels as discussed by the authors.
Journal ArticleDOI

Spreading Dead Zones and Consequences for Marine Ecosystems

TL;DR: Dead zones in the coastal oceans have spread exponentially since the 1960s and have serious consequences for ecosystem functioning, exacerbated by the increase in primary production and consequent worldwide coastal eutrophication fueled by riverine runoff of fertilizers and the burning of fossil fuels.
Related Papers (5)