scispace - formally typeset
Journal ArticleDOI

Heterogeneous visible light photocatalysis for selective organic transformations

Reads0
Chats0
TLDR
This review covers state-of-the-art accomplishments in visible-light-induced selective organic transformations by heterogeneous photocatalysis and discusses three sections based on the photocatalyst type: metal oxides such as TiO2, Nb2O5 and ZnO; plasmonic photocatalysts like nanostructured Au, Ag or Cu supported on metal oxide; and polymeric graphitic carbon nitride.
Abstract
The future development of chemistry entails environmentally friendly and energy sustainable alternatives for organic transformations. Visible light photocatalysis can address these challenges, as reflected by recent intensive scientific endeavours to this end. This review covers state-of-the-art accomplishments in visible-light-induced selective organic transformations by heterogeneous photocatalysis. The discussion comprises three sections based on the photocatalyst type: metal oxides such as TiO2, Nb2O5 and ZnO; plasmonic photocatalysts like nanostructured Au, Ag or Cu supported on metal oxides; and polymeric graphitic carbon nitride. Finally, recent strides in bridging the gap between photocatalysis and other areas of catalysis will be highlighted with the aim of overcoming the existing limitations of photocatalysis by developing more creative synthetic methodologies.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?

TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Journal ArticleDOI

Polymeric Photocatalysts Based on Graphitic Carbon Nitride

TL;DR: The photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal coc atalysts, and Z-scheme heterojunctions.
Journal ArticleDOI

A review on g-C3N4-based photocatalysts

TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.
Journal ArticleDOI

Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis.

TL;DR: A critical appraisal of different synthetic approaches to Cu and Cu-based nanoparticles and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications in catalysis.
Journal ArticleDOI

Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions

TL;DR: In this review, the applications of MOFs with multiple active sites in synergistic organic catalysis, photocatalysis and tandem reactions are discussed and proposed mechanisms are presented in detail.
References
More filters
Journal ArticleDOI

Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis

TL;DR: The conversion of these bench stable, benign catalysts to redox-active species upon irradiation with simple household lightbulbs represents a remarkably chemoselective trigger to induce unique and valuable catalytic processes.
Journal ArticleDOI

Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy

TL;DR: Plasmon-enhanced water splitting on composite photocatalysts containing semiconductor and plasmonic-metal building blocks is focused on, and recently reported plasMon-mediated photocatallytic reactions on plAsmonic nanostructures of noble metals are discussed.
Journal ArticleDOI

Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures

TL;DR: It is shown that plasmonic nanostructures of silver can concurrently use low-intensity visible light and thermal energy to drive catalytic oxidation reactions--such as ethylene epoxidation, CO oxidation, and NH₃ oxidation--at lower temperatures than their conventional counterparts that use only thermal stimulus.
Journal ArticleDOI

Ag@AgCl: A Highly Efficient and Stable Photocatalyst Active under Visible Light

TL;DR: It is shown that such a photocatalyst can be obtained from silver chloride by exploiting its photosensitivity, and the resulting plasmonic photoc atalyst is highly efficient and stable under visible-light illumination.
Journal ArticleDOI

Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light

TL;DR: A bioinspired iron-based catalyst with semiconductor photocatalytic functions in combination with a high surface area holds promise for synthetic chemistry via combining photocatalysis with organosynthesis through using g-C(3)N(4) nanoparticles.
Related Papers (5)