scispace - formally typeset
Journal ArticleDOI

High-κ dielectrics for advanced carbon- nanotube transistors and logic gates

Reads0
Chats0
TLDR
In this article, high-kappa (approximately 25) zirconium oxide thin-films (approximately 8 nm) are formed on top of individual single-walled carbon nanotubes by atomic-layer deposition and used as gate dielectrics for nanotube field effect transistors.
Abstract
The integration of materials having a high dielectric constant (high-kappa) into carbon-nanotube transistors promises to push the performance limit for molecular electronics. Here, high-kappa (approximately 25) zirconium oxide thin-films (approximately 8 nm) are formed on top of individual single-walled carbon nanotubes by atomic-layer deposition and used as gate dielectrics for nanotube field-effect transistors. The p-type transistors exhibit subthreshold swings of S approximately 70 mV per decade, approaching the room-temperature theoretical limit for field-effect transistors. Key transistor performance parameters, transconductance and carrier mobility reach 6,000 S x m(-1) (12 microS per tube) and 3,000 cm2 x V(-1) x s(-1) respectively. N-type field-effect transistors obtained by annealing the devices in hydrogen exhibit S approximately 90 mV per decade. High voltage gains of up to 60 are obtained for complementary nanotube-based inverters. The atomic-layer deposition process affords gate insulators with high capacitance while being chemically benign to nanotubes, a key to the integration of advanced dielectrics into molecular electronics.

read more

Citations
More filters
Journal ArticleDOI

Ballistic carbon nanotube field-effect transistors

TL;DR: It is shown that contacting semiconducting single-walled nanotubes by palladium, a noble metal with high work function and good wetting interactions with nanotube, greatly reduces or eliminates the barriers for transport through the valence band of nanot tubes.
Journal ArticleDOI

Carbon-based electronics.

TL;DR: This work reviews the progress that has been made with carbon nanotubes and, more recently, graphene layers and nanoribbons and suggests that it could be possible to make both electronic and optoelectronic devices from the same material.
Journal ArticleDOI

Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process

TL;DR: In this paper, the surface chemistry of the trimethylaluminum/water ALD process is reviewed, with an aim to combine the information obtained in different types of investigations, such as growth experiments on flat substrates and reaction chemistry investigation on high-surface-area materials.
Journal ArticleDOI

Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures

TL;DR: This review will explore the materials properties of transparent conductors, covering traditional metal oxides and conductive polymers initially, but with a focus on current developments in nano-material coatings.
References
More filters
Journal ArticleDOI

High-κ gate dielectrics: Current status and materials properties considerations

TL;DR: In this paper, a review of the literature in the area of alternate gate dielectrics is given, based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success.
Journal ArticleDOI

Room-temperature transistor based on a single carbon nanotube

TL;DR: In this paper, the fabrication of a three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics and has attracted much interest, particularly because it could lead to new miniaturization strategies in the electronics and computer industry.
Book

Fields and Waves in Communication Electronics

TL;DR: In this article, two-and three-dimensional boundary value problems are studied for two-dimensional waveguides with Cylindrical Conducting Boundaries (CCLB).
Journal ArticleDOI

Single- and multi-wall carbon nanotube field-effect transistors

TL;DR: In this article, the authors fabricated field effect transistors based on individual single and multi-wall carbon nanotubes and analyzed their performance, showing that structural deformations can make them operate as field-effect transistors.
Journal ArticleDOI

Extreme oxygen sensitivity of electronic properties of carbon nanotubes

TL;DR: The results, although demonstrating that nanotubes could find use as sensitive chemical gas sensors, likewise indicate that many supposedly intrinsic properties measured on as-prepared nanotube may be severely compromised by extrinsic air exposure effects.
Related Papers (5)