scispace - formally typeset
Open AccessJournal ArticleDOI

How supernova feedback turns dark matter cusps into cores

Reads0
Chats0
TLDR
In this article, an analytical description of the physical processes associated with the origin of cored dark matter density profiles is proposed and successfully tested against new cosmological simulations. But the model is restricted to the case where only a few per cent of the baryons form stars.
Abstract
We propose and successfully test against new cosmological simulations a novel analytical description of the physical processes associated with the origin of cored dark matter density profiles. In the simulations, the potential in the central kiloparsec changes on sub-dynamical timescales over the redshift interval 4 > z > 2 as repeated, energetic feedback generates large underdense bubbles of expanding gas from centrally-concentrated bursts of star formation. The model demonstrates how fluctuations in the central potential irreversibly transfer energy into collisionless particles, thus generating a dark matter core. A supply of gas undergoing collapse and rapid expansion is therefore the essential ingredient. The framework, based on a novel impulsive approximation, breaks with the reliance on adiabatic approximations which are inappropriate in the rapidly-changing limit. It shows that both outflows and galactic fountains can give rise to cusp-flattening, even when only a few per cent of the baryons form stars. Dwarf galaxies maintain their core to the present time. The model suggests that constant density dark matter cores will be generated in systems of a wide mass range if central starbursts or AGN phases are sufficiently frequent and energetic.

read more

Citations
More filters
Journal ArticleDOI

Ultralight scalars as cosmological dark matter

TL;DR: Fuzzy dark matter (FDM) as discussed by the authorsDM is an alternative to CDM, which is an extremely light boson having a de Broglie wavelength inside the galaxy.
Journal ArticleDOI

A facility to search for hidden particles at the CERN SPS: the SHiP physics case.

Sergey Alekhin, +95 more
TL;DR: It is demonstrated that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.
Journal ArticleDOI

Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure

TL;DR: In this article, the effects of self-interacting dark matter (SIDM) on the density profiles and substructure counts of dark matte r halos from the scales of spiral galaxies to galaxy clusters are studied.
Journal ArticleDOI

Physical Models of Galaxy Formation in a Cosmological Framework

TL;DR: In this article, the authors review the current status of models that employ semi-analytic models and numerical hydrodynamic simulations to simulate the physics of galaxy formation and show remarkable convergence between different methods and make predictions that are in qualitative agreement with observations.
References
More filters
Journal ArticleDOI

The Structure of cold dark matter halos

TL;DR: In this article, high-resolution N-body simulations show that the density profiles of dark matter halos formed in the standard CDM cosmogony can be fit accurately by scaling a simple universal profile.
Journal ArticleDOI

Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES

TL;DR: In this article, a new N-body and hydrodynamical code, called RAMSES, is presented, which is designed to study structure formation in the universe with high spatial resolution.
Journal ArticleDOI

The Star Formation Law in Nearby Galaxies on Sub-Kpc Scales

TL;DR: In this article, the authors present a comprehensive analysis of the relationship between star formation rate surface density and gas surface density at sub-kpc resolution in a sample of 18 nearby galaxies and investigate how the star formation law differs between the H2 dominated centers of spiral galaxies, their H I dominated outskirts and the H I rich late-type/dwarf galaxies.
Journal ArticleDOI

E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh

TL;DR: In this article, a moving unstructured mesh defined by the Voronoi tessellation of a set of discrete points is used to solve the hyperbolic conservation laws of ideal hydrodynamics with a finite volume approach, based on a second-order unsplit Godunov scheme with an exact Riemann solver.
Related Papers (5)