scispace - formally typeset
Open AccessJournal ArticleDOI

Improved Cosmological Constraints from New, Old and Combined Supernova Datasets

TLDR
In this article, the authors present a new compilation of Type Ia supernovae (SNe Ia), a new dataset of low-redshift nearby-Hubble-flow SNe and new analysis procedures to work with these heterogeneous compilations.
Abstract
We present a new compilation of Type Ia supernovae (SNe Ia), a new dataset of low-redshift nearby-Hubble-flow SNe and new analysis procedures to work with these heterogeneous compilations. This ``Union'' compilation of 414 SN Ia, which reduces to 307 SNe after selection cuts, includes the recent large samples of SNe Ia from the Supernova Legacy Survey and ESSENCE Survey, the older datasets, as well as the recently extended dataset of distant supernovae observed with HST. A single, consistent and blind analysis procedure is used for all the various SN Ia subsamples, and a new procedure is implemented that consistently weights the heterogeneous data sets and rejects outliers. We present the latest results from this Union compilation and discuss the cosmological constraints from this new compilation and its combination with other cosmological measurements (CMB and BAO). The constraint we obtain from supernovae on the dark energy density is $\Omega_\Lambda= 0.713^{+0.027}_{-0.029} (stat)}^{+0.036}_{-0.039} (sys)}$, for a flat, LCDM Universe. Assuming a constant equation of state parameter, $w$, the combined constraints from SNe, BAO and CMB give $w=-0.969^{+0.059}_{-0.063}(stat)^{+0.063}_{-0.066} (sys)$. While our results are consistent with a cosmological constant, we obtain only relatively weak constraints on a $w$ that varies with redshift. In particular, the current SN data do not yet significantly constrain $w$ at $z>1$. With the addition of our new nearby Hubble-flow SNe Ia, these resulting cosmological constraints are currently the tightest available.

read more

Citations
More filters
Journal ArticleDOI

Cosmological constant behavior in DBI theory

TL;DR: In this article, a family of attractor solutions to the cosmological constant were derived from the Dirac-Born-Infeld (DBI) action without an explicit false vacuum energy.
Journal ArticleDOI

Blinding multiprobe cosmological experiments

J. Muir, +79 more
TL;DR: In this article, the authors proposed a simple new blinding transformation, which works by modifying the summary statistics that are input to parameter estimation, such as two-point correlation functions, to new values that are consistent with (blindly) shifted cosmological parameters while preserving internal consistency.
Journal ArticleDOI

Galaxy cluster angular-size data constraints on dark energy

TL;DR: This article used angular size versus redshift data for galaxy clusters provided by Bonamente and collaborators to place constraints on model parameters of constant and time-evolving dark energy cosmological models.
Journal ArticleDOI

Geometrical diagnostic for purely kinetic k-essence dark energy

TL;DR: In this paper, the statefinder { r, s } and Om ( x ) were applied to purely kinetic k-essence dark energy model with Dirac-Born-Infeld-like Lagrangian which can be considered as scalar field realizations of Chaplygin gas.
References
More filters
Journal ArticleDOI

Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds

TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Journal ArticleDOI

The relationship between infrared, optical, and ultraviolet extinction

TL;DR: In this article, the average extinction law over the 3.5 micron to 0.125 wavelength range was derived for both diffuse and dense regions of the interstellar medium. And the validity of the law over a large wavelength interval suggests that the processes which modify the sizes and compositions of grains are stochastic in nature.
Journal ArticleDOI

Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies

Daniel J. Eisenstein, +51 more
TL;DR: In this paper, a large-scale correlation function measured from a spectroscopic sample of 46,748 luminous red galaxies from the Sloan Digital Sky Survey is presented, which demonstrates the linear growth of structure by gravitational instability between z ≈ 1000 and the present and confirms a firm prediction of the standard cosmological theory.
Related Papers (5)

Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies

Daniel J. Eisenstein, +51 more