scispace - formally typeset
Journal ArticleDOI

Interpreting the protein language using proteomics

Reads0
Chats0
TLDR
Combining state-of-the-art technologies in molecular cell biology, protein mass spectrometry and bioinformatics, it is now feasible to discover and study the structural and functional roles of distinct protein post-translational modifications.
Abstract
Post-translational modifications define the functional and structural plasticity of proteins in archaea, prokaryotes and eukaryotes. Multi-site protein modification modulates protein activity and macromolecular interactions and is involved in a range of fundamental molecular processes. Combining state-of-the-art technologies in molecular cell biology, protein mass spectrometry and bioinformatics, it is now feasible to discover and study the structural and functional roles of distinct protein post-translational modifications.

read more

Citations
More filters
Journal ArticleDOI

Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions

TL;DR: A proteomic-scale analysis of protein acetylation suggests that it is an important biological regulatory mechanism and the regulatory scope of lysine acetylations is broad and comparable with that of other major posttranslational modifications.
Journal ArticleDOI

Protein Analysis by Shotgun/Bottom-up Proteomics

TL;DR: The progress of proteomics has been driven by the development of new technologies for peptide/protein separation, mass spectrometry analysis, isotope labeling for quantification, and bioinformatics data analysis.
Journal ArticleDOI

The growing landscape of lysine acetylation links metabolism and cell signalling

TL;DR: These emerging findings point to new functions for different lysine acylations and deacylating enzymes and also highlight the mechanisms by which acetylation regulates various cellular processes.
Journal Article

Global Analysis of Protein Phosphorylation in Yeast

TL;DR: The in vitro substrates recognized by most yeast protein kinases are described, with the use of proteome chip technology, and these results will provide insights into the mechanisms and roles of protein phosphorylation in many eukaryotes.
Journal ArticleDOI

Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints

TL;DR: A "filter aided sample preparation" (FASP)-based method in which glycopeptides are enriched by binding to lectins on the top of a filter and mapped 6367 N-glycosylation sites on 2352 proteins in four mouse tissues and blood plasma using high-accuracy mass spectrometry reveals that the sites always orient toward the extracellular space or toward the lumen of ER, Golgi, lysosome, or peroxisome.
References
More filters
Journal ArticleDOI

Mass spectrometry-based proteomics

TL;DR: The ability of mass spectrometry to identify and, increasingly, to precisely quantify thousands of proteins from complex samples can be expected to impact broadly on biology and medicine.
Journal ArticleDOI

Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.

TL;DR: SILAC is a simple, inexpensive, and accurate procedure that can be used as a quantitative proteomic approach in any cell culture system and is applied to the relative quantitation of changes in protein expression during the process of muscle cell differentiation.
Journal ArticleDOI

Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents

TL;DR: It is found that inactivation of Upf1p and Xrn1p causes common as well as unique effects on protein expression, and the use of 4-fold multiplexing to enable relative protein measurements simultaneously with determination of absolute levels of a target protein using synthetic isobaric peptide standards.
Journal ArticleDOI

Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry

TL;DR: Peptide sequence analysis using a combination of gas-phase ion/ion chemistry and tandem mass spectrometry (MS/MS) is demonstrated and automated acquisition of high-quality, single-scan electron transfer dissociation MS/MS spectra of phosphopeptides separated by nanoflow HPLC is described.
Related Papers (5)