scispace - formally typeset
Open AccessJournal ArticleDOI

Is Ocean Acidification an Open-Ocean Syndrome? Understanding Anthropogenic Impacts on Seawater pH

TLDR
In this paper, the authors argue that ocean acidification from anthropogenic CO2 emissions is largely an open ocean syndrome and that a concept of anthro- pogenic impacts on marine pH, which is applicable across the entire ocean, from coastal to open-ocean environments, provides a superior framework to consider the multiple components of the anthropogenic perturbation of marine pH trajectories.
Abstract
Ocean acidification due to anthropogenic CO2 emissions is a dominant driver of long-term changes in pH in the open ocean, raising concern for the future of calcifying organisms, many of which are present in coastal habitats. However, changes in pH in coastal ecosystems result from a multitude of drivers, including impacts from watershed pro- cesses, nutrient inputs, and changes in ecosystem structure and metabolism. Interaction between ocean acidification due to anthropogenic CO2 emissions and the dynamic regional to local drivers of coastal ecosystems have resulted in complex regulation of pH in coastal waters. Changes in the watershed can, for example, lead to changes in alkalinity and CO2 fluxes that, together with metabolic processes and oceanic dynamics, yield high-magnitude decadal changes of up to 0.5 units in coastal pH. Metabolism results in strong diel to seasonal fluctuations in pH, with characteristic ranges of 0.3 pH units, with metabolically intense habitats exceeding this range on a daily basis. The intense variability and multiple, complex controls on pH implies that the concept of ocean acidification due to anthropogenic CO2 emissions cannot be transposed to coastal ecosystems directly. Furthermore, in coastal ecosys- tems, the detection of trends towards acidification is not trivial and the attribution of these changes to anthropogenic CO2 emissions is even more problematic. Coastal ecosystems may show acidification or basification, depending on the balance betweenthe invasionof coastal waters byanthropogenic CO2, watershed export of alkalinity, organic matter and CO2 ,a nd changes in the balance between primary production, respira- tion and calcification rates in response to changes in nutrient inputs and losses of ecosystem components. Hence, we contend that ocean acidification from anthropogenic CO2 is largely an open-ocean syndrome and that a concept of anthro- pogenic impacts on marine pH, which is applicable across the entire ocean, from coastal to open-ocean environments, provides a superior framework to consider the multiple components of the anthropogenic perturbation of marine pH trajectories. The concept of anthropogenic impacts on seawater pH acknowledges that a regional focus is neces- sary to predict future trajectories in the pH of coastal waters and points at opportunities to manage these trajec- tories locally to conserve coastal organisms vulnerable to ocean acidification.

read more

Citations
More filters

Impacts of 1.5°C Global Warming on Natural and Human Systems

Ove Hoegh-Guldberg, +86 more
TL;DR: In this article, the authors present a survey of women's sportswriters in South Africa and Ivory Coast, including: Marco Bindi (Italy), Sally Brown (UK), Ines Camilloni (Argentina), Arona Diedhiou (Ivory Coast/Senegal), Riyanti Djalante (Japan/Indonesia), Kristie L. Ebi (USA), Francois Engelbrecht (South Africa), Joel Guiot (France), Yasuaki Hijioka (Japan), Shagun Mehrotra (USA/India), Ant
Journal ArticleDOI

Coastal ocean acidification: The other eutrophication problem

TL;DR: In this paper, the potential for acidification in eutrophic estuaries was assessed during the onset, peak, and demise of low oxygen conditions in systems across the northeast US including Narragansett Bay (RI), Long Island Sound (CT-NY), Jamaica Bay (NY), and Hempstead Bay ( NY).
Journal ArticleDOI

Ocean Acidification in the Coastal Zone from an Organism's Perspective: Multiple System Parameters, Frequency Domains, and Habitats

TL;DR: This work reviews the processes that contribute to coastal acidification with attention to timescales of variability and habitats relevant to marine bivalves.
Journal ArticleDOI

Climate change and dead zones

TL;DR: It is posited that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication.
References
More filters
Journal ArticleDOI

Oceanography: anthropogenic carbon and ocean pH.

TL;DR: It is found that oceanic absorption of CO2 from fossil fuels may result in larger pH changes over the next several centuries than any inferred from the geological record of the past 300 million years.
Journal ArticleDOI

Ocean Acidification: The Other CO 2 Problem

TL;DR: The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research as mentioned in this paper, and both are only imperfect analogs to current conditions.
Related Papers (5)