scispace - formally typeset
Journal ArticleDOI

Location Fingerprinting With Bluetooth Low Energy Beacons

Ramsey Faragher, +1 more
- 06 May 2015 - 
- Vol. 33, Iss: 11, pp 2418-2428
TLDR
This work provides a detailed study of BLE fingerprinting using 19 beacons distributed around a ~600 m2 testbed to position a consumer device, and investigates the choice of key parameters in a BLE positioning system, including beacon density, transmit power, and transmit frequency.
Abstract
The complexity of indoor radio propagation has resulted in location-awareness being derived from empirical fingerprinting techniques, where positioning is performed via a previously-constructed radio map, usually of WiFi signals. The recent introduction of the Bluetooth Low Energy (BLE) radio protocol provides new opportunities for indoor location. It supports portable battery-powered beacons that can be easily distributed at low cost, giving it distinct advantages over WiFi. However, its differing use of the radio band brings new challenges too. In this work, we provide a detailed study of BLE fingerprinting using 19 beacons distributed around a $\sim\! 600\ \mbox{m}^2$ testbed to position a consumer device. We demonstrate the high susceptibility of BLE to fast fading, show how to mitigate this, and quantify the true power cost of continuous BLE scanning. We further investigate the choice of key parameters in a BLE positioning system, including beacon density, transmit power, and transmit frequency. We also provide quantitative comparison with WiFi fingerprinting. Our results show advantages to the use of BLE beacons for positioning. For one-shot (push-to-fix) positioning we achieve $30\ \mbox{m}^2$ ), compared to $100\ \mbox{m}^2$ ) and < 8.5 m for an established WiFi network in the same area.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Multi-Source Fusion Localization Technology Based on Convolutional Neural Networks

TL;DR: In this paper, the authors proposed a WiFi/BLE/Pedestrian Dead Reckoning (PDR) fusion localization system based on convolutional neural network (CNN) to solve the problem.
Posted Content

A review of smartphones based indoor positioning: challenges and applications

TL;DR: This article is dedicated to review the most recent and interesting smartphones based indoor navigation systems, ranging from electromagnetic to inertia to visible light ones, with an emphasis on their unique challenges and potential real-world applications.
Journal ArticleDOI

An Enhanced Indoor Positioning Solution Using Dynamic Radio Fingerprinting Spatial Context Recognition

TL;DR: In this paper , the authors proposed an enhanced indoor positioning solution using spatial context knowledge, extracted from the sparse dynamic fingerprints and stored in a spatial features database to reduce the computational time and storage space complexity.
Proceedings ArticleDOI

Real-time and Precise Indoor Localization System in Multi-Floor Buildings for Pedestrian using Cloud Platform

TL;DR: Wang et al. as discussed by the authors proposed the indoor localization technology based on surface correlation (SC), which can estimate the location of pedestrians on only one floor using only RF signal without using other sensors such as barometric pressure sensor.
Proceedings ArticleDOI

Effect of Construction Materials on Indoor Positioning System using Bluetooth Low Energy

TL;DR: In this paper , the effect of construction materials on the localisation accuracy of an indoor positioning system based on trilateration using received signal strength indicators (RSSI) from BLE beacon nodes was studied.
References
More filters
Journal ArticleDOI

Survey of Wireless Indoor Positioning Techniques and Systems

TL;DR: Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.
Proceedings ArticleDOI

The Horus WLAN location determination system

TL;DR: The Horus system identifies different causes for the wireless channel variations and addresses them and uses location-clustering techniques to reduce the computational requirements of the algorithm and the lightweight Horus algorithm helps in supporting a larger number of users by running the algorithm at the clients.
Journal ArticleDOI

A Survey of Indoor Inertial Positioning Systems for Pedestrians

TL;DR: It is concluded that PDR techniques alone can offer good short- to medium- term tracking under certain circumstances, but that regular absolute position fixes from partner systems will be needed to ensure long-term operation and to cope with unexpected behaviours.

Enhancements to the RADAR User Location and Tracking System

TL;DR: This paper analyzes shortcomings of the basic system, develops and evaluates solutions to address these shortcomings, and describes several new enhancements, including a novel access point-based environmental profiling scheme, and a Viterbi-like algorithm for continuous user tracking and disambiguation of candidate user locations.

Network Time Protocol Version 4: Protocol and Algorithms Specification

TL;DR: NTP version 4 (NTPv4), which is backwards compatible with NTP version 3 (N TPv3), described in RFC 1305, as well as previous versions of the protocol, are described.
Related Papers (5)