scispace - formally typeset
Journal ArticleDOI

Magnetic particle hyperthermia : nanoparticle magnetism and materials development for cancer therapy

TLDR
In this paper, the specific loss power of magnetic nanoparticles for hyperthermia was investigated with respect to optimization of the SLP for application in tumour hyper-thermia and the dependence of the loss power on the mean particle size was studied over a broad size range from superparamagnetic up to multidomain particles.
Abstract
Loss processes in magnetic nanoparticles are discussed with respect to optimization of the specific loss power (SLP) for application in tumour hyperthermia. Several types of magnetic iron oxide nanoparticles representative for different preparation methods (wet chemical precipitation, grinding, bacterial synthesis, magnetic size fractionation) are the subject of a comparative study of structural and magnetic properties. Since the specific loss power useful for hyperthermia is restricted by serious limitations of the alternating field amplitude and frequency, the effects of the latter are investigated experimentally in detail. The dependence of the SLP on the mean particle size is studied over a broad size range from superparamagnetic up to multidomain particles, and guidelines for achieving large SLP under the constraints valid for the field parameters are derived. Particles with the mean size of 18 nm having a narrow size distribution proved particularly useful. In particular, very high heating power may be delivered by bacterial magnetosomes, the best sample of which showed nearly 1 kW g −1 at 410 kHz and 10 kA m −1 . This value may even be exceeded by metallic magnetic particles, as indicated by measurements on cobalt particles.

read more

Citations
More filters
Journal ArticleDOI

Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications.

TL;DR: Biocompatibility, Pharmaceutical and Biomedical Applications L. Harivardhan Reddy,‡ Jose ́ L. Arias, Julien Nicolas,† and Patrick Couvreur*,†.
Journal ArticleDOI

Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery

TL;DR: Potential opportunities for the combination of hyperthermia-based therapy and controlled drug release paradigms--towards successful application in personalized medicine are portrayed.
Journal ArticleDOI

Exchange-coupled magnetic nanoparticles for efficient heat induction

TL;DR: This Letter demonstrates a significant increase in the efficiency of magnetic thermal induction by nanoparticles and finds that the therapeutic efficacy of these nanoparticles is superior to that of a common anticancer drug.
Journal ArticleDOI

Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles.

TL;DR: In this review, the limitations and recent advances in the development of superparamagnetic iron oxide nanoparticles for hyperthermia are presented.
Journal ArticleDOI

Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy.

TL;DR: Magnetoresponsive Therapy Nohyun Lee, Dongwon Yoo, Daishun Ling,†,‡,⊥ Mi Hyeon Cho, Taeghwan H Yeon,*,†,† and Jinwoo Cheon.
References
More filters
Book

Electrodynamics of continuous media

TL;DR: In this article, the propagation of electromagnetic waves and X-ray diffraction of X rays in crystals are discussed. But they do not consider the effects of superconductivity on superconducting conductors.
Journal ArticleDOI

A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys

TL;DR: In this paper, the effect of shape anisotropy on magnetization curves was studied for the case of ellipsoidal spheroids of revolution (e.g., ellipses of revolution).
Journal ArticleDOI

Size-Controlled Synthesis of Magnetite Nanoparticles

TL;DR: The reported procedure can be used as a general approach to various ferrite nanoparticles and nanoparticle superlattices.
Journal ArticleDOI

Heating magnetic fluid with alternating magnetic field

TL;DR: In this paper, the authors developed analytical relationships and computations of power dissipation in magnetic fluid (ferrofluid) subjected to alternating magnetic field and showed that the dissipation results from the orientational relaxation of particles having thermal fluctuations in a viscous medium.
Journal ArticleDOI

The preparation of magnetic nanoparticles for applications in biomedicine

TL;DR: In this article, a review of state-of-the-art synthetic routes for the preparation of magnetic nanoparticles useful for biomedical applications is presented, with a special emphasis on showing the benefits of using nanoparticles.
Related Papers (5)