scispace - formally typeset
Journal ArticleDOI

Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials

Reads0
Chats0
TLDR
In this paper, the synthesis, transfer, and characterization methods of graphene and 2D materials and their application to flexible devices as well as comparison with other competing materials are discussed. And a review of the application of graphene in flexible electronics is presented.
Abstract
Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.

read more

Citations
More filters
Journal ArticleDOI

Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics.

TL;DR: Progress in nanogenerators for mechanical energy harvesting is reviewed, mainly including two key technologies: flexible piezoelectric nanognerators (PENGs) and flexible triboelectrics nanogsenerators (TENGs).
Journal ArticleDOI

Graphene-based smart materials

TL;DR: In this article, different graphene-based smart materials are described, along with their potential applications in actuators, chemical or strain sensors, self-healing materials, photothermal therapy and controlled drug delivery.
Journal ArticleDOI

High- k Gate Dielectrics for Emerging Flexible and Stretchable Electronics

TL;DR: This review summarizes and analyzes recent advances in materials concepts as well as in thin-film fabrication techniques for high- k gate dielectrics when integrated with FSE-compatible semiconductors such as organics, metal oxides, quantum dot arrays, carbon nanotubes, graphene, and other 2D semiconductor types.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Journal ArticleDOI

Building better batteries

TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Related Papers (5)