scispace - formally typeset
Journal ArticleDOI

Nanowire-based programmable architectures

Reads0
Chats0
TLDR
This work develops nanowire-based architectures which can bridge between lithographic and atomic-scale feature sizes and tolerate defective and stochastic assembly of regular arrays to deliver high density universal computing devices.
Abstract
Chemists can now construct wires which are just a few atoms in diameter; these wires can be selectively field-effect gated, and wire crossings can act as diodes with programmable resistance. These new capabilities present both opportunities and challenges for constructing nanoscale computing systems. The tiny feature sizes offer a path to economically scale down to atomic dimensions. However, the associated bottom-up synthesis techniques only produce highly regular structures and come with high defect rates and minimal control during assembly. To exploit these technologies, we develop nanowire-based architectures which can bridge between lithographic and atomic-scale feature sizes and tolerate defective and stochastic assembly of regular arrays to deliver high density universal computing devices. Using 10nm pitch nanowires, these nanowire-based programmable architectures offer one to two orders of magnitude greater mapped-logic density than defect-free lithographic FPGAs at 22nm.

read more

Citations
More filters
Book

Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation

Scott Hauck, +1 more
TL;DR: This book is intended as an introduction to the entire range of issues important to reconfigurable computing, using FPGAs as the context, or "computing vehicles" to implement this powerful technology.
Book

FPGA Architecture: Survey and Challenges

TL;DR: This survey reviews the historical development of programmable logic devices, the fundamental programming technologies that the programmability is built on, and then describes the basic understandings gleaned from research on architectures.
Journal ArticleDOI

Reconfigurable Silicon Nanowire Transistors

TL;DR: This novel nanotransistor technology makes way for a simple and compact hardware platform that can be flexibly reconfigured during operation to perform different logic computations yielding unprecedented circuit design flexibility.
Journal ArticleDOI

Beyond von Neumann—logic operations in passive crossbar arrays alongside memory operations

TL;DR: It is demonstrated here that 14 of 16 Boolean functions can be realized with a single BRS or CRS cell in at most three sequential cycles, making logic-in-memory applications feasible.
Journal ArticleDOI

Self-organized computation with unreliable, memristive nanodevices

TL;DR: This work proposes to mitigate device shortcomings and exploit their dynamical character by building self-organizing, self-healing networks that implement massively parallel computations, useful for complex pattern recognition problems.
References
More filters
Journal ArticleDOI

High Performance Silicon Nanowire Field Effect Transistors

TL;DR: In this article, the influence of source-drain contact thermal annealing and surface passivation on key transistor properties was examined, and it was shown that thermal annaling and passivation of oxide defects using chemical modification can increase the average transconductance from 45 to 800 nS and average mobility from 30 to 560 cm 2 /V
Journal ArticleDOI

Logic gates and computation from assembled nanowire building blocks.

TL;DR: It is shown that crossed nanowire p-n junctions and junction arrays can be assembled in over 95% yield with controllable electrical characteristics, and in addition, that these junctions can be used to create integrated nanoscale field-effect transistor arrays with nanowires as both the conducting channel and gate electrode.
Journal ArticleDOI

Epitaxial core–shell and core–multishell nanowire heterostructures

TL;DR: The synthesis of core–multishell structures, including a high-performance coaxially gated field-effect transistor, indicates the general potential of radial heterostructure growth for the development of nanowire-based devices.
Journal Article

SIS : A System for Sequential Circuit Synthesis

TL;DR: This paper provides an overview of SIS and contains descriptions of the input specification, STG (state transition graph) manipulation, new logic optimization and verification algorithms, ASTG (asynchronous signal transition graph] manipulation, and synthesis for PGA’s (programmable gate arrays).
Journal ArticleDOI

Carbon nanotube-based nonvolatile random access memory for molecular computing

TL;DR: A concept for molecular electronics exploiting carbon nanotubes as both molecular device elements and molecular wires for reading and writing information was developed and the viability of this concept is demonstrated by detailed calculations and by the experimental realization of a reversible, bistable nanotube-based bit.
Related Papers (5)