scispace - formally typeset
Journal ArticleDOI

Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy.

TLDR
This constructed PCT-agent is the first paradigm of NIR-upconversion catalyzed intra-mitochondrial Fenton reaction in response to tumoral microenvironment, establishing a novel photochemotherapy strategy for efficient cancer therapy.
About
This article is published in Biomaterials.The article was published on 2017-10-01. It has received 202 citations till now. The article focuses on the topics: Photodynamic therapy & Singlet oxygen.

read more

Citations
More filters
Journal ArticleDOI

Reactive Oxygen Species (ROS)-Based Nanomedicine.

TL;DR: In this article, the intrinsic biochemical properties of reactive oxygen species (ROS) underlie the mechanisms that regulate various physiological functions of living organisms, and they play an essential role in regulating various physiological function.
Journal ArticleDOI

Chemodynamic Therapy: Tumour Microenvironment‑Mediated Fenton and Fenton‑like Reactions

TL;DR: Various strategies based on the Fenton reaction have been employed to enhance hydroxyl radical generation, including nanomaterials selection, modulation of the reaction environment, and external energy fields stimulation, which are discussed systematically in this Minireview.
Journal ArticleDOI

Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy

TL;DR: This tutorial review summarizes the very-recent research progress in the design and synthesis of representative nanoplatforms with intriguing nanostructures, compositions, physiochemical properties and biological behaviours for versatile catalytic chemical reaction-enabled cancer treatments, mainly by either endogenous tumour microenvironment triggering or exogenous physical irradiation.
Journal ArticleDOI

All-in-One Theranostic Nanoagent with Enhanced Reactive Oxygen Species Generation and Modulating Tumor Microenvironment Ability for Effective Tumor Eradication

TL;DR: Biocompatible copper ferrite nanospheres (CFNs) with enhanced ROS production under irradiation with a 650 nm laser through direct electron transfer and photoenhanced Fenton reaction and high photothermal conversion efficiency upon exposure to an 808 nm laser are reported, exhibiting a considerable improved synergistic treatment effect.
Journal ArticleDOI

Biodegradable Biomimic Copper/Manganese Silicate Nanospheres for Chemodynamic/Photodynamic Synergistic Therapy with Simultaneous Glutathione Depletion and Hypoxia Relief.

TL;DR: In this paper, a biodegradable cancer cell membrane-coated mesoporous copper/manganese silicate nanospheres (mCMSNs) with homotypic targeting ability to the cancer cell lines and enhanced ROS generation through singlet oxygen (1O2) production and glutathione (GSH)-activated Fenton reaction, showing excellent CDT/PDT synergistic therapeutic effects.
References
More filters
Journal ArticleDOI

Hallmarks of cancer: the next generation.

TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.
Journal ArticleDOI

Signatures of mutational processes in human cancer

Ludmil B. Alexandrov, +84 more
- 22 Aug 2013 - 
TL;DR: It is shown that hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types, and this results reveal the diversity of mutational processes underlying the development of cancer.
Journal ArticleDOI

Cancer Genome Landscapes

TL;DR: This work has revealed the genomic landscapes of common forms of human cancer, which consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of "hills" (Genes altered infrequently).
Related Papers (5)