scispace - formally typeset
Open AccessJournal ArticleDOI

Near optimal solution to the inverse problem for gravitational-wave bursts.

Yekta Gursel, +1 more
- 15 Dec 1989 - 
- Vol. 40, Iss: 12, pp 3884-3938
Reads0
Chats0
TLDR
To improve the accuracy of the solution for (θ,φ), h+(t), h×(t), a near optimal filter is constructed for the noisy data which is deduced from the data themselves, which works for gravitational-wave bursts of any kind.
Abstract
We develop a method for determining the source direction (θ,φ) and the two waveforms h+(t), h×(t) of a gravitational-wave burst using noisy data from three wideband gravitational-wave detectors running in coincidence. The scheme does not rely on any assumptions about the waveforms and in fact it works for gravitational-wave bursts of any kind. To improve the accuracy of the solution for (θ,φ), h+(t), h×(t), we construct a near optimal filter for the noisy data which is deduced from the data themselves. We implement the method numerically using simulated data for detectors that operate, with white Gaussian noise, in the frequency band of 500–2500 Hz. We show that for broadband signals centered around 1 kHz with a conventional signal-to-noise ratio of at least 10 in each detector we are able to locate the source within a solid angle of 1×10^-5 sr. If the signals and the detectors’ band were scaled downwards in frequency by a factor ι, at fixed signal-to-noise ratio, then the solid angle of the source’s error box would increase by a factor ι^2. The simulated data are assumed to be produced by three detectors: one on the east coast of the United States of America, one on the west coast of the United States of America, and the third in Germany or Western Australia. For conventional signal-to-noise ratios significantly lower than 10 the method still converges to the correct combination of the relative time delays but it is unable to distinguish between the two mirror-image directions defined by the relative time delays. The angular spread around these points increases as the signal-to-noise ratio decreases. For conventional signal-to-noise ratios near 1 the method loses its resolution completely.

read more

Content maybe subject to copyright    Report






Citations
More filters
Journal ArticleDOI

LIGO: The Laser Interferometer Gravitational-Wave Observatory.

TL;DR: The goal of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Project is to detect and study astrophysical gravitational waves and use data from them for research in physics and astronomy.
Journal ArticleDOI

Testing general relativity with present and future astrophysical observations

Emanuele Berti, +64 more
TL;DR: In this article, a catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einstein's theory is presented, and the current understanding of the structure and dynamics of compact objects in these theories is summarized.
Journal ArticleDOI

Physics, Astrophysics and Cosmology with Gravitational Waves

TL;DR: The most likely sources of gravitational waves are studied and the data analysis methods that are used to extract their signals from detector noise are reviewed, and the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology are considered.
Journal ArticleDOI

What is the most promising electromagnetic counterpart of a neutron star binary merger

TL;DR: In this paper, the authors evaluate and compare several possible counterparts, including short-duration gamma-ray bursts (SGRBs), "orphan" optical and radio afterglows, and day-long optical transients powered by the radioactive decay of heavy nuclei synthesized in the merger ejecta ("kilonovae") and conclude that SGRBs are the most useful to confirm the cosmic origin of a few GW events.
Journal ArticleDOI

Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays

TL;DR: This review is focused on tests of Einstein’s theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments, and the predicted gravitational-wave observables of modified gravity theories.
Related Papers (5)

Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors

J. Abadie, +722 more