scispace - formally typeset
Open AccessJournal ArticleDOI

Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays

Reads0
Chats0
TLDR
This review is focused on tests of Einstein’s theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments, and the predicted gravitational-wave observables of modified gravity theories.
Abstract
This review is focused on tests of Einstein’s theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein’s theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The Confrontation Between General Relativity and Experiment

TL;DR: Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging.
Journal ArticleDOI

Tests of general relativity with GW150914

B. P. Abbott, +979 more
TL;DR: It is found that the final remnant's mass and spin, as determined from the low-frequency and high-frequency phases of the signal, are mutually consistent with the binary black-hole solution in general relativity.
Journal ArticleDOI

Testing general relativity with present and future astrophysical observations

Emanuele Berti, +64 more
TL;DR: In this article, a catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einstein's theory is presented, and the current understanding of the structure and dynamics of compact objects in these theories is summarized.
Book

Regular and Chaotic Dynamics

TL;DR: In this article, a self consistent treatment of the subject at the graduate level and as a reference for scientists already working in the field is presented. But the focus is on the mechanics for generating chaotic motion, methods of calculating the transitions from regular to chaotic motion and the dynamical and statistical properties of the dynamics when it is chaotic.
References
More filters
Journal ArticleDOI

The Large N limit of superconformal field theories and supergravity

TL;DR: In this article, it was shown that the large-N limits of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravityon the product of anti-de Sitter spacetimes, spheres, and other compact manifolds.
Journal ArticleDOI

Monte Carlo Sampling Methods Using Markov Chains and Their Applications

TL;DR: A generalization of the sampling method introduced by Metropolis et al. as mentioned in this paper is presented along with an exposition of the relevant theory, techniques of application and methods and difficulties of assessing the error in Monte Carlo estimates.
Book

The Large Scale Structure of Space-Time

TL;DR: In this paper, the authors discuss the General Theory of Relativity in the large and discuss the significance of space-time curvature and the global properties of a number of exact solutions of Einstein's field equations.
Book

General Relativity

Robert Wald
Related Papers (5)

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more

Tests of general relativity with GW150914

B. P. Abbott, +979 more

GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence

B. P. Abbott, +973 more

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott, +1134 more