scispace - formally typeset
Open AccessJournal ArticleDOI

Optical and near-infrared observations of the GRB020405 afterglow ?

Reads0
Chats0
TLDR
It is suggested that the bump can be modeled with a SN having the same temporal profile as the other proposed hypernova SN2002ap, but 1.3 mag brighter at peak, and located at the GRB redshift.
Abstract
We report on photometric, spectroscopic and polarimetric monitoring of the optical and near-infrared (NIR) afterglow of GRB020405. Ground-based optical observations, performed with 8 different telescopes, started about 1 day after the high-energy prompt event and spanned a period of ∼10 days; the addition of archival HST data extended the coverage up to ∼150 days after the GRB. We report the first detection of the afterglow in NIR bands. The detection of Balmer and oxygen emission lines in the optical spectrum of the host galaxy indicates that the GRB is located at redshift z = 0.691. Fe II and Mg II absorption systems are detected at z = 0.691 and at z = 0.472 in the afterglow optical spectrum. The latter system is likely caused by absorbing clouds in the galaxy complex located ∼2" southwest of the GRB020405 host. Hence, for the first time, the galaxy responsible for an intervening absorption line system in the spectrum of a GRB afterglow is spectroscopically identified. Optical and NIR photometry of the afterglow indicates that, between 1 and 10 days after the GRB, the decay in all bands is consistent with a single power law of index a = 1.54 ′0.06. The late-epoch VLT J-band and HST optical points lie above the extrapolation of this power law, so that a plateau (or "bump") is apparent in the VRIJ light curves at 10-20 days after the GRB. The light curves at epochs later than day ∼20 after the GRB are consistent with a power-law decay with index α' = 1.85 ′ 0.15. While other authors have proposed to reproduce the bump with the template of the supernova (SN) 1998bw, considered the prototypical "hypernova", we suggest that it can also be modeled with a SN having the same temporal profile as the other proposed hypernova SN2002ap, but 1.3 mag brighter at peak, and located at the GRB redshift. Alternatively, a shock re-energization may be responsible for the rebrightening. A single polarimetric R-band measurement shows that the afterglow is polarized, with P = 1.5 ′ 0.4% and polarization angle 0 = 172° ′8°. Broad-band optical-NIR spectral flux distributions show, in the first days after the GRB, a change of slope across the J band which we interpret as due to the presence of the electron cooling frequency v c . The analysis of the multiwavelength spectrum within the standard fireball model suggests that a population of relativistic electrons with index p ∼ 2.7 produces the optical-NIR emission via synchrotron radiation in an adiabatically expanding blastwave, with negligible host galaxy extinction, and the X-rays via Inverse Compton scattering off lower-frequency afterglow photons.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Signatures of Extragalactic Dust in Pre-Swift GRB Afterglows

TL;DR: In this paper, a systematic analysis of gamma-ray burst afterglow spectral energy distributions (SEDs) in the optical/near-infrared bands is presented, which includes the entire world sample of afterglows observed in the pre-Swift era by the end of 2004 that have sufficient publicly available data.
Journal ArticleDOI

Constraining ΩM and Dark Energy with Gamma-Ray Bursts

TL;DR: In this article, the authors constrain the mass density of the universe and the nature of dark energy for a sample of 12 gamma-ray burst (GRB) with known redshift, peak energy, and break time of afterglow light curves.
Journal ArticleDOI

A Systematic Analysis of Supernova Light in Gamma-Ray Burst Afterglows

TL;DR: In this paper, the authors systematically reanalyzed all gamma-ray burst (GRB) afterglow data published through the end of 2002 in an attempt to detect the predicted supernova light component and to gain statistical insight into its phenomenological properties.
Journal ArticleDOI

GRBs as cosmological probes—cosmic chemical evolution

TL;DR: In this article, the neutral interstellar medium (ISM) around gamma-ray bursts (GRBs) is used to estimate the mass-metallicity relation (and its redshift evolution) observed in normal star-forming galaxies.
References
More filters
Journal ArticleDOI

Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds

TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Journal ArticleDOI

Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds

TL;DR: In this paper, the authors presented a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed.
Journal ArticleDOI

The relationship between infrared, optical, and ultraviolet extinction

TL;DR: In this article, the average extinction law over the 3.5 micron to 0.125 wavelength range was derived for both diffuse and dense regions of the interstellar medium. And the validity of the law over a large wavelength interval suggests that the processes which modify the sizes and compositions of grains are stochastic in nature.
Journal ArticleDOI

Star formation in galaxies along the hubble sequence

TL;DR: In this article, the authors focus on the broad patterns in the star formation properties of galaxies along the Hubble sequence and their implications for understanding galaxy evolution and the physical processes that drive the evolution.
Journal ArticleDOI

DAOPHOT: A Computer Program for Crowded-Field Stellar Photometry

TL;DR: The DAOPHOT program as mentioned in this paper performs stellar photometry in crowded fields using CCD images of stars in a crowded field, and shortcomings and possible improvements of the program are considered.
Related Papers (5)