scispace - formally typeset
Open AccessJournal ArticleDOI

Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9

TLDR
Recently devised sgRNA design rules are used to create human and mouse genome-wide libraries, perform positive and negative selection screens and observe that the use of these rules produced improved results, and a metric to predict off-target sites is developed.
Abstract
CRISPR-Cas9-based genetic screens are a powerful new tool in biology. By simply altering the sequence of the single-guide RNA (sgRNA), one can reprogram Cas9 to target different sites in the genome with relative ease, but the on-target activity and off-target effects of individual sgRNAs can vary widely. Here, we use recently devised sgRNA design rules to create human and mouse genome-wide libraries, perform positive and negative selection screens and observe that the use of these rules produced improved results. Additionally, we profile the off-target activity of thousands of sgRNAs and develop a metric to predict off-target sites. We incorporate these findings from large-scale, empirical data to improve our computational design rules and create optimized sgRNA libraries that maximize on-target activity and minimize off-target effects to enable more effective and efficient genetic screens and genome engineering.

read more

Citations
More filters
Journal ArticleDOI

Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR.

TL;DR: It is found that the optimal on-target efficiency prediction model strongly depends on whether the guide RNA is expressed from a U6 promoter or transcribed in vitro, and it is demonstrated that the best predictions can significantly reduce the time spent on guide screening.
Journal ArticleDOI

Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells.

TL;DR: CERES, a computational method to estimate gene-dependency levels from CRISPR–Cas9 essentiality screens while accounting for the copy number–specific effect, is developed and found that CERES decreased false-positive results and estimated sgRNA activity for both this data set and previously published screens performed with different sg RNA libraries.
Journal ArticleDOI

Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors

TL;DR: This work analyzes key considerations when choosing genome editing agents and identifies opportunities for future improvements and applications in basic research and therapeutics.
Journal ArticleDOI

CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing

TL;DR: This major update of CHOPCHOP introduces functionality for targeting RNA with Cas13, which includes support for alternative transcript isoforms and RNA accessibility predictions, and incorporates new DNA targeting modes, including CRISPR activation/repression, targeted enrichment of loci for long-read sequencing, and prediction of Cas9 repair outcomes.
Journal ArticleDOI

CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens.

TL;DR: CRISPOR tries to provide a comprehensive solution from selection, cloning and expression of guide RNA as well as providing primers needed for testing guide activity and potential off-targets.
References
More filters
Journal ArticleDOI

Fast gapped-read alignment with Bowtie 2

TL;DR: Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
Journal ArticleDOI

A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
Journal ArticleDOI

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Related Papers (5)