scispace - formally typeset
Open AccessJournal ArticleDOI

Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast

Reads0
Chats0
TLDR
In this paper, Set2 is associated with Rbp1 and Rbp2, the two largest subunits of RNA polymerase II (RNA pol II), and this association is specific for the interaction of Set2 with the hyperphosphorylated form of RNA pol II.
Abstract
Histone methylation is now realized to be a pivotal regulator of gene transcription. Although recent studies have shed light on a trans-histone regulatory pathway that controls H3 Lys 4 and H3 Lys 79 methylation in Saccharomyces cerevisiae, the regulatory pathway that affects Set2-mediated H3 Lys 36 methylation is unknown. To determine the functions of Set2, and identify factors that regulate its site of methylation, we genomically tagged Set2 and identified its associated proteins. Here, we show that Set2 is associated with Rbp1 and Rbp2, the two largest subunits of RNA polymerase II (RNA pol II). Moreover, we find that this association is specific for the interaction of Set2 with the hyperphosphorylated form of RNA pol II. We further show that deletion of the RNA pol II C-terminal domain (CTD) kinase Ctk1, or partial deletion of the CTD, results in a selective abolishment of H3 Lys 36 methylation, implying a pathway of Set2 recruitment to chromatin and a role for H3 Lys 36 methylation in transcription elongation. In support, chromatin immunoprecipitation assays demonstrate the presence of Set2 methylation in the coding regions, as well as promoters, of genes regulated by Ctk1 or Set2. These data document a new link between histone methylation and the transcription apparatus and uncover a regulatory pathway that is selective for H3 Lys 36 methylation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Regulation of chromatin by histone modifications

TL;DR: The known histone modifications are described, where they are found genomically and discussed and some of their functional consequences are discussed, concentrating mostly on transcription where the majority of characterisation has taken place.
Journal ArticleDOI

The Role of Chromatin during Transcription

TL;DR: This Review highlights advances in the understanding of chromatin regulation and discusses how such regulation affects the binding of transcription factors as well as the initiation and elongation steps of transcription.
Journal ArticleDOI

The diverse functions of histone lysine methylation.

TL;DR: Recent advances in understanding of how lysine methylation functions in these diverse biological processes are summarized, and questions that need to be addressed in the future are raised.
Journal ArticleDOI

A Chromatin Landmark and Transcription Initiation at Most Promoters in Human Cells

TL;DR: The results of a genome-wide analysis of human cells suggest that most protein-coding genes, including most genes thought to be transcriptionally inactive, experience transcription initiation, and that transcription initiation at most genes is a general phenomenon in human cells.
Journal ArticleDOI

Genome-wide map of nucleosome acetylation and methylation in yeast.

TL;DR: These maps take into account changes in nucleosome occupancy at actively transcribed genes and, in doing so, revise previous assessments of the modifications associated with gene expression, providing the foundation for further understanding the roles of chromatin in gene expression and genome maintenance.
References
More filters
Journal ArticleDOI

Translating the Histone Code

TL;DR: It is proposed that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.
Journal ArticleDOI

The language of covalent histone modifications.

TL;DR: It is proposed that distinct histone modifications, on one or more tails, act sequentially or in combination to form a ‘histone code’ that is, read by other proteins to bring about distinct downstream events.
Journal ArticleDOI

Active genes are tri-methylated at K4 of histone H3

TL;DR: It is shown that the Saccharomyces cerevisiae Set1 protein can catalyse di- and tri-methylation of K4 and stimulate the activity of many genes, establishing the concept of methyl status as a determinant for gene activity and extending considerably the complexity of histone modifications.
Journal ArticleDOI

Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails

TL;DR: This work aims to demonstrate the efforts towards in-situ applicability of EMMARM, which aims to provide real-time information about the “building blocks” of EMT and its role in cancer progression.
Related Papers (5)