scispace - formally typeset
Open AccessJournal ArticleDOI

Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles

TLDR
By utilizing dual excitation of plasmons at metal-fluid interface, this work creates interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures and have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms.
Abstract
Single-molecule surface-enhanced Raman scattering (SM-SERS) is one of the vital applications of plasmonic nanoparticles. The SM-SERS sensitivity critically depends on plasmonic hot-spots created at the vicinity of such nanoparticles. In conventional fluid-phase SM-SERS experiments, plasmonic hot-spots are facilitated by chemical aggregation of nanoparticles. Such aggregation is usually irreversible, and hence, nanoparticles cannot be re-dispersed in the fluid for further use. Here, we show how to combine SM-SERS with plasmon polariton-assisted, reversible assembly of plasmonic nanoparticles at an unstructured metal–fluid interface. One of the unique features of our method is that we use a single evanescent-wave optical excitation for nanoparticle assembly, manipulation and SM-SERS measurements. Furthermore, by utilizing dual excitation of plasmons at metal–fluid interface, we create interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures. Our work will have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms. Plasmonic hot-spot generation in solution is not reversible for single-molecule surface-enhanced Raman scattering, which limits its applications. Patra et al.tackle this problem by integrating this technique with thermo-plasmon-assisted reconfiguration of nanoparticles at a metal–fluid interface.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Effect of manganese on electronic and optical properties of Ba2ZnS3: A DFT study

TL;DR: In this paper, the structural, electronic, and optical properties of pristine Ba2ZnS3 and Mn4+ doped Ba2S3 at Ba-site have been carried out by employing the first-principles calculations based on density functional theory (DFT).
Book ChapterDOI

Extrusion Bioprinting of Scaffolds: An Introduction

TL;DR: This chapter presents a brief introduction to the development of scaffolds for tissue engineering applications as well as various scaffold fabrication techniques, including extrusion bioprinting.
Journal ArticleDOI

Changes of crop failure risks in the United States associated with large-scale climate oscillations in the Atlantic and Pacific Oceans

TL;DR: In this paper, a Bayesian approach was used to assess climate-induced changes of annual crop failure risks for maize and winter wheat from 1960 to 2016, by analyzing the associations of large-scale climate oscillations with the frequency of crop failure in the rainfed regions of the United States.
Journal ArticleDOI

Anisotropy effects on the kinetics of colloidal crystallization and melting: comparison of spheres and ellipsoids

TL;DR: The large influence of aspect ratio on the kinetics of the positionally and orientationally ordered phase is explored through simulation; it is found that the number of particle degrees of freedom controls the difference between the melting rates of the ellipsoids and spheres.
Journal ArticleDOI

Ancestral morphology of Ecdysozoa constrained by an early Cambrian stem group ecdysozoan.

TL;DR: This study suggests acquisition of pharyngeal armature, and therefore a change in feeding strategy, may have characterised the origin and radiation of crown group ecdysozoans from Acosmia -like ancestors.
References
More filters
Journal ArticleDOI

Optical Constants of the Noble Metals

TL;DR: In this paper, the optical constants for the noble metals (copper, silver, and gold) from reflection and transmission measurements on vacuum-evaporated thin films at room temperature, in the spectral range 0.5-6.5 eV.
Journal ArticleDOI

Surface plasmon subwavelength optics

TL;DR: By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved.
Journal ArticleDOI

Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering

TL;DR: In this article, surface-enhanced Raman scattering was used to detect single molecules and single nanoparticles at room temperature with the use of surface enhanced Raman, and the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15, much larger than the ensemble-averaged values derived from conventional measurements.
Journal ArticleDOI

Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)

TL;DR: In this article, the first observation of single molecule Raman scattering was made using a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about $2.
Journal ArticleDOI

Biosensing with plasmonic nanosensors

TL;DR: This paper introduces the localized surface plasmon resonance (LSPR) sensor and describes how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation.
Related Papers (5)