scispace - formally typeset
Open AccessJournal ArticleDOI

Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles

TLDR
By utilizing dual excitation of plasmons at metal-fluid interface, this work creates interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures and have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms.
Abstract
Single-molecule surface-enhanced Raman scattering (SM-SERS) is one of the vital applications of plasmonic nanoparticles. The SM-SERS sensitivity critically depends on plasmonic hot-spots created at the vicinity of such nanoparticles. In conventional fluid-phase SM-SERS experiments, plasmonic hot-spots are facilitated by chemical aggregation of nanoparticles. Such aggregation is usually irreversible, and hence, nanoparticles cannot be re-dispersed in the fluid for further use. Here, we show how to combine SM-SERS with plasmon polariton-assisted, reversible assembly of plasmonic nanoparticles at an unstructured metal–fluid interface. One of the unique features of our method is that we use a single evanescent-wave optical excitation for nanoparticle assembly, manipulation and SM-SERS measurements. Furthermore, by utilizing dual excitation of plasmons at metal–fluid interface, we create interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures. Our work will have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms. Plasmonic hot-spot generation in solution is not reversible for single-molecule surface-enhanced Raman scattering, which limits its applications. Patra et al.tackle this problem by integrating this technique with thermo-plasmon-assisted reconfiguration of nanoparticles at a metal–fluid interface.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Engineering AAV receptor footprints for gene therapy

TL;DR: A structural perspective of capsid-glycan interactions is presented and provides a roadmap for generating synthetic strains by engineering AAV receptor footprints.
Journal ArticleDOI

Potential indicators of virus transport and removal during soil aquifer treatment of treated wastewater effluent

TL;DR: PMMoV and crAssphage showed potential as conservative process indicators of virus removal during SAT, particularly for attribution of LRV credits, indicating the potential influence of wetting/drying cycles on virus removal by SAT, a parameter that has not yet been studied with respect to biological contaminants.
Journal ArticleDOI

Silent enhancement of SERS signal without increasing hot spot intensities

TL;DR: In this paper, the authors proposed a method to circumvent the limitation of hot spot enhancement due to modification of the vibrational modes, the breakdown of the molecule, and the tunneling regime.
Journal ArticleDOI

Cell-surface translational dynamics of nicotinic acetylcholine receptors

TL;DR: An important function of the α7 nAChR may be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain.
Journal ArticleDOI

Silicon Algae with Carbon Topping as Thin-film Anodes for Lithium-ion Microbatteries by a Two-step facile Method

TL;DR: In this paper, a safe, innovative strategy to prepare nanostructured silicon-carbon anodes in a two-step process is presented, where the nanoporosity of Si films accommodates the volume expansion while a disordered graphitic C layer on top promotes the formation of a stable SEI.
References
More filters
Journal ArticleDOI

Optical Constants of the Noble Metals

TL;DR: In this paper, the optical constants for the noble metals (copper, silver, and gold) from reflection and transmission measurements on vacuum-evaporated thin films at room temperature, in the spectral range 0.5-6.5 eV.
Journal ArticleDOI

Surface plasmon subwavelength optics

TL;DR: By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved.
Journal ArticleDOI

Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering

TL;DR: In this article, surface-enhanced Raman scattering was used to detect single molecules and single nanoparticles at room temperature with the use of surface enhanced Raman, and the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15, much larger than the ensemble-averaged values derived from conventional measurements.
Journal ArticleDOI

Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)

TL;DR: In this article, the first observation of single molecule Raman scattering was made using a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about $2.
Journal ArticleDOI

Biosensing with plasmonic nanosensors

TL;DR: This paper introduces the localized surface plasmon resonance (LSPR) sensor and describes how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation.
Related Papers (5)