scispace - formally typeset
Open AccessJournal ArticleDOI

Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles

TLDR
By utilizing dual excitation of plasmons at metal-fluid interface, this work creates interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures and have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms.
Abstract
Single-molecule surface-enhanced Raman scattering (SM-SERS) is one of the vital applications of plasmonic nanoparticles. The SM-SERS sensitivity critically depends on plasmonic hot-spots created at the vicinity of such nanoparticles. In conventional fluid-phase SM-SERS experiments, plasmonic hot-spots are facilitated by chemical aggregation of nanoparticles. Such aggregation is usually irreversible, and hence, nanoparticles cannot be re-dispersed in the fluid for further use. Here, we show how to combine SM-SERS with plasmon polariton-assisted, reversible assembly of plasmonic nanoparticles at an unstructured metal–fluid interface. One of the unique features of our method is that we use a single evanescent-wave optical excitation for nanoparticle assembly, manipulation and SM-SERS measurements. Furthermore, by utilizing dual excitation of plasmons at metal–fluid interface, we create interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures. Our work will have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms. Plasmonic hot-spot generation in solution is not reversible for single-molecule surface-enhanced Raman scattering, which limits its applications. Patra et al.tackle this problem by integrating this technique with thermo-plasmon-assisted reconfiguration of nanoparticles at a metal–fluid interface.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Electrochemical Li-Ion Intercalation in Octacyanotungstate-Bridged Coordination Polymer with Evidence of Three Magnetic Regimes.

TL;DR: It is demonstrated that an octacyanotungstate-bridged coordination polymer Tb(H2O)5[W(CN)8] operates as a Li(+)-ion intercalation electrode material and electrochemical switching between paramagnetic and short-range ordering regimes can be achieved.
Journal ArticleDOI

Climate-induced rice yield anomalies linked to large-scale atmospheric circulation in Bangladesh using multi-statistical modeling

TL;DR: In this paper, the authors investigated daily climatic datasets from 18 sites and five LACIs during 1980-2017 to explore climate-induced yield anomalies to the key climatic variables (KCVs) and large-scale atmospheric circulation index (LACI) is crucial to developing a strategic policy for food security in developing countries including Bangladesh.
Journal ArticleDOI

Hypoxia triggers collective aerotactic migration in Dictyostelium discoideum.

TL;DR: In this paper, a self-generated hypoxic assay was used to show that the amoeba Dictyostelium discoideum displays a remarkable collective aerotactic behavior.
Journal ArticleDOI

Electronic and geometric determinants of adsorption: fundamentals and applications

TL;DR: In this paper, the authors provide a comprehensive review of the development process and connections between the d-band model and the generalized coordination number model, and provide necessary and fundamental background knowledge to further understand the underlying mechanism of adsorption and offer beneficial guidance for the rapid screening of catalysts and materials design.
Journal ArticleDOI

Differential cellular proliferation underlies heterochronic generation of cranial diversity in phyllostomid bats

TL;DR: This is the first study which links differential cellular proliferation and developmental modularity with heterochronic developmental changes, leading to the evolution of adaptive cranial diversity in an important group of mammals.
References
More filters
Journal ArticleDOI

Optical Constants of the Noble Metals

TL;DR: In this paper, the optical constants for the noble metals (copper, silver, and gold) from reflection and transmission measurements on vacuum-evaporated thin films at room temperature, in the spectral range 0.5-6.5 eV.
Journal ArticleDOI

Surface plasmon subwavelength optics

TL;DR: By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved.
Journal ArticleDOI

Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering

TL;DR: In this article, surface-enhanced Raman scattering was used to detect single molecules and single nanoparticles at room temperature with the use of surface enhanced Raman, and the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15, much larger than the ensemble-averaged values derived from conventional measurements.
Journal ArticleDOI

Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)

TL;DR: In this article, the first observation of single molecule Raman scattering was made using a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about $2.
Journal ArticleDOI

Biosensing with plasmonic nanosensors

TL;DR: This paper introduces the localized surface plasmon resonance (LSPR) sensor and describes how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation.
Related Papers (5)