scispace - formally typeset
Open AccessJournal ArticleDOI

Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles

TLDR
By utilizing dual excitation of plasmons at metal-fluid interface, this work creates interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures and have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms.
Abstract
Single-molecule surface-enhanced Raman scattering (SM-SERS) is one of the vital applications of plasmonic nanoparticles. The SM-SERS sensitivity critically depends on plasmonic hot-spots created at the vicinity of such nanoparticles. In conventional fluid-phase SM-SERS experiments, plasmonic hot-spots are facilitated by chemical aggregation of nanoparticles. Such aggregation is usually irreversible, and hence, nanoparticles cannot be re-dispersed in the fluid for further use. Here, we show how to combine SM-SERS with plasmon polariton-assisted, reversible assembly of plasmonic nanoparticles at an unstructured metal–fluid interface. One of the unique features of our method is that we use a single evanescent-wave optical excitation for nanoparticle assembly, manipulation and SM-SERS measurements. Furthermore, by utilizing dual excitation of plasmons at metal–fluid interface, we create interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures. Our work will have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms. Plasmonic hot-spot generation in solution is not reversible for single-molecule surface-enhanced Raman scattering, which limits its applications. Patra et al.tackle this problem by integrating this technique with thermo-plasmon-assisted reconfiguration of nanoparticles at a metal–fluid interface.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Shaping elastic wave mode conversion with a piezoelectric-based programmable meta-boundary

TL;DR: In this article, a programmable meta-boundary with deep subwavelength thickness was introduced, composed of an array of piezoelectric sensing-and-actuating units controlled by electrical circuits such that pressure to shear wave conversions are able to be electrically reconfigured.
Journal ArticleDOI

Proximity biotinylation reveals novel secreted dense granule proteins of Toxoplasma gondii bradyzoites

TL;DR: New components of the GRA proteome of the tissue-cyst life stage of T. gondii are highlighted and potential targets that are important for maintenance of parasite persistence in vivo are identified.
Journal ArticleDOI

Food web fuel differs across habitats and seasons of a tidal freshwater estuary

TL;DR: The authors evaluated the importance of primary producers to adult fishes in three closely spaced subregions that represented disparate habitat types (a tidal wetland channel, a turbid backwater channel, and a deep open-water channel), each a potential outcome of local restoration projects.
Journal ArticleDOI

Maternal diet during pregnancy and intestinal markers are associated with early gut microbiota

TL;DR: Maternal diet during pregnancy, mainly fat intake (SFA and MUFA), was related to intestinal markers, thus likely shifting the microbial transmission to the neonate and priming the neonatal microbial profile with potential health outcomes.
Journal ArticleDOI

Inferring Population Histories for Ancient Genomes Using Genome-Wide Genealogies.

TL;DR: In this article, a fast and scalable method, Colate, is presented for inferring ancestral relationships through time between low-coverage genomes without requiring phasing or imputation.
References
More filters
Journal ArticleDOI

Optical Constants of the Noble Metals

TL;DR: In this paper, the optical constants for the noble metals (copper, silver, and gold) from reflection and transmission measurements on vacuum-evaporated thin films at room temperature, in the spectral range 0.5-6.5 eV.
Journal ArticleDOI

Surface plasmon subwavelength optics

TL;DR: By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved.
Journal ArticleDOI

Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering

TL;DR: In this article, surface-enhanced Raman scattering was used to detect single molecules and single nanoparticles at room temperature with the use of surface enhanced Raman, and the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15, much larger than the ensemble-averaged values derived from conventional measurements.
Journal ArticleDOI

Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)

TL;DR: In this article, the first observation of single molecule Raman scattering was made using a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about $2.
Journal ArticleDOI

Biosensing with plasmonic nanosensors

TL;DR: This paper introduces the localized surface plasmon resonance (LSPR) sensor and describes how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation.
Related Papers (5)