scispace - formally typeset
Open AccessJournal ArticleDOI

Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles

TLDR
By utilizing dual excitation of plasmons at metal-fluid interface, this work creates interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures and have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms.
Abstract
Single-molecule surface-enhanced Raman scattering (SM-SERS) is one of the vital applications of plasmonic nanoparticles. The SM-SERS sensitivity critically depends on plasmonic hot-spots created at the vicinity of such nanoparticles. In conventional fluid-phase SM-SERS experiments, plasmonic hot-spots are facilitated by chemical aggregation of nanoparticles. Such aggregation is usually irreversible, and hence, nanoparticles cannot be re-dispersed in the fluid for further use. Here, we show how to combine SM-SERS with plasmon polariton-assisted, reversible assembly of plasmonic nanoparticles at an unstructured metal–fluid interface. One of the unique features of our method is that we use a single evanescent-wave optical excitation for nanoparticle assembly, manipulation and SM-SERS measurements. Furthermore, by utilizing dual excitation of plasmons at metal–fluid interface, we create interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures. Our work will have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms. Plasmonic hot-spot generation in solution is not reversible for single-molecule surface-enhanced Raman scattering, which limits its applications. Patra et al.tackle this problem by integrating this technique with thermo-plasmon-assisted reconfiguration of nanoparticles at a metal–fluid interface.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Novel magneto-electric multiferroics from first-principles calculations

TL;DR: This chapter aims to highlight the key advances in the field of multiferroics for which first-principles methods have contributed significantly.
Posted ContentDOI

Pathways to Consumers’ Minds: Using Machine Learning and Multiple EEG Metrics to Increase Preference Prediction Above and Beyond Traditional Measurements

TL;DR: In this paper, the EEG signals of subjects, as they watched commercials of six food products, were used to predict their individual future preferences over the products and the commercials' population success, as measured by their YouTube metrics.
Journal ArticleDOI

Evolution of layer distance and structural arrangement of graphene oxide with various oxygen content and functional types in low temperature: A ReaxFF molecular dynamics simulation

TL;DR: In this paper, the density of oxygen-containing groups is the main variable that controls the distribution of surface oxidation areas and the degree of distortion of the graphene sheets at low temperature.
Journal ArticleDOI

Ecological variation in Later Stone Age southern African biomechanical properties

TL;DR: In this article, cross-sectional geometric properties (CSGPs) indicative of habitual physical behaviours, including manual activities and terrestrial mobility, vary among southern African Later Stone Age (LSA) Mediterranean Cape coast (n = 85), semiarid central interior (n= 53), and hyperarid Namib Desert (n ǫ = 17) individuals.
Journal ArticleDOI

Novel multiferroic state and ME enhancement by breaking the AFM frustration in LuMn1−xO3

TL;DR: Raman spectroscopy, dielectric permittivity, pyroelectric current and magnetic measurements as a function of temperature point out the precursor effects of the magnetic phase transitions involving a strong coupling between spins, lattice and electric order, even above the Néel temperature.
References
More filters
Journal ArticleDOI

Optical Constants of the Noble Metals

TL;DR: In this paper, the optical constants for the noble metals (copper, silver, and gold) from reflection and transmission measurements on vacuum-evaporated thin films at room temperature, in the spectral range 0.5-6.5 eV.
Journal ArticleDOI

Surface plasmon subwavelength optics

TL;DR: By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved.
Journal ArticleDOI

Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering

TL;DR: In this article, surface-enhanced Raman scattering was used to detect single molecules and single nanoparticles at room temperature with the use of surface enhanced Raman, and the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15, much larger than the ensemble-averaged values derived from conventional measurements.
Journal ArticleDOI

Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)

TL;DR: In this article, the first observation of single molecule Raman scattering was made using a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about $2.
Journal ArticleDOI

Biosensing with plasmonic nanosensors

TL;DR: This paper introduces the localized surface plasmon resonance (LSPR) sensor and describes how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation.
Related Papers (5)