scispace - formally typeset
Journal ArticleDOI

Porous, Crystalline, Covalent Organic Frameworks

Reads0
Chats0
TLDR
Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid and hexahydroxytriphenylene to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms.
Abstract
Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid {C6H4[B(OH)2]2} and hexahydroxytriphenylene [C18H6(OH)6]. Powder x-ray diffraction studies of the highly crystalline products (C3H2BO)6.(C9H12)1 (COF-1) and C9H4BO2 (COF-5) revealed expanded porous graphitic layers that are either staggered (COF-1, P6(3)/mmc) or eclipsed (COF-5, P6/mmm). Their crystal structures are entirely held by strong bonds between B, C, and O atoms to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms. COF-1 and COF-5 exhibit high thermal stability (to temperatures up to 500 degrees to 600 degrees C), permanent porosity, and high surface areas (711 and 1590 square meters per gram, respectively).

read more

Citations
More filters
Journal ArticleDOI

Conjugated porous polymers for photocatalytic applications

TL;DR: Conjugated porous polymers (CPPs) are a class of fully crosslinked polymers defined by high surface area and porosity in the nanometer range, having been traditionally developed for applications such as gas storage, sensing and (photo)catalysis.
Journal ArticleDOI

Recent advances on porous organic frameworks for the adsorptive removal of hazardous materials

TL;DR: In this review, the literature of the past five years on the adsorptive removal of various hazardous materials, mainly including heavy metal ions, harmful gases, organic dyes, pharmaceutical and personal care products, and radionuclides from the environment by using COFs and MOFs, is summarized.
Journal ArticleDOI

Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling π-electronic functions

TL;DR: Phthalocyanine covalent organic frameworks with different central metals are synthesized, and the AA-stacking structure of the 2D polymer sheets results in periodic phthalochenine π-columns, which improve the improvement of light absorbance, the ease of carrier transport and the photocurrent gain.
Journal ArticleDOI

Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions

TL;DR: In this article, a review of the different sodium storage mechanisms observed in various categories of organic electrode materials is presented, and the fundamental understanding of the redox mechanisms that govern the electrochemical performances of SIBs is necessary to design new materials/electrodes and is beneficial for enhancing the existing properties of investigated compounds.
Journal ArticleDOI

Kinetically Trapped Tetrahedral Cages via Alkyne Metathesis.

TL;DR: The near-quantitative preparation of tetrahedral cages from simple tritopic precursors using alkyne metathesis is presented, and it is experimentally demonstrated that the products no longer exchange their vertices once they have formed.
References
More filters
Book

Adsorption by Powders and Porous Solids: Principles, Methodology and Applications

TL;DR: In this paper, the authors provide an introductory review of the various theoretical and practical aspects of adsorption by powders and porous solids with particular reference to materials of technological importance.
Journal ArticleDOI

An ordered mesoporous organosilica hybrid material with a crystal-like wall structure.

TL;DR: The surfactant-mediated synthesis of an ordered benzene–silica hybrid material has an hexagonal array of mesopores and crystal-like pore walls that exhibit structural periodicity, and it is expected that other organosilicas and organo-metal oxides can be produced in a similar fashion, to yield a range of hierarchically ordered mesoporous solids with molecular-scale pore surface periodicity.
Journal ArticleDOI

Unified Approach to Pore Size Characterization of Microporous Carbonaceous Materials from N2, Ar, and CO2 Adsorption Isotherms†

TL;DR: In this paper, a unified approach to pore size characterization of microporous carbonaceous materials such as activated carbon and carbon fibers by nitrogen, argon, and carbon dioxide adsorption at standard temperatures, 77 K for N2 and Ar and 273 K for CO2, was presented.
Journal ArticleDOI

Adsorption Study of Surface and Structural Properties of MCM-41 Materials of Different Pore Sizes

TL;DR: In this paper, the pore size of MCM-41 materials was estimated based on geometrical considerations of the ratio of pore volume to pore wall volume for an infinite hexagonal array of cylindrical pores.
Related Papers (5)