scispace - formally typeset
Journal ArticleDOI

Porous, Crystalline, Covalent Organic Frameworks

Reads0
Chats0
TLDR
Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid and hexahydroxytriphenylene to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms.
Abstract
Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid {C6H4[B(OH)2]2} and hexahydroxytriphenylene [C18H6(OH)6]. Powder x-ray diffraction studies of the highly crystalline products (C3H2BO)6.(C9H12)1 (COF-1) and C9H4BO2 (COF-5) revealed expanded porous graphitic layers that are either staggered (COF-1, P6(3)/mmc) or eclipsed (COF-5, P6/mmm). Their crystal structures are entirely held by strong bonds between B, C, and O atoms to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms. COF-1 and COF-5 exhibit high thermal stability (to temperatures up to 500 degrees to 600 degrees C), permanent porosity, and high surface areas (711 and 1590 square meters per gram, respectively).

read more

Citations
More filters
Journal ArticleDOI

Two-Dimensional Covalent Organic Frameworks (COFs) for Membrane Separation: a Mini Review

TL;DR: Two dimensional nanomaterials have provided immense potential for separation applications to relieve the trade-off relationship between selectivity and permeability as mentioned in this paper, and they have been used in many separation applications.
Journal ArticleDOI

Advanced functional polymer materials

TL;DR: The research on advanced functional polymers is being driven by the fast-growing demand for new functional materials that can be used in revolutionary technologies as mentioned in this paper, which can be endowed with functions by using certain special preparation methods or by introducing functional groups or fillers into materials.
Journal ArticleDOI

Facile synthesis of core–shell structured magnetic covalent organic framework composite nanospheres for selective enrichment of peptides with simultaneous exclusion of proteins

TL;DR: A facile approach was developed for rapid room-temperature synthesis of core-shell structured magnetic covalent organic framework composite nanospheres by using monodisperse Fe3O4 nanoparticles as the magnetic core and 1,3,5-triformylbenzene (Tb) and benzidine (Bd) as two building blocks in the presence of dimethyl sulfoxide.
Journal ArticleDOI

Electronic Structure of Two-Dimensional π-Conjugated Covalent Organic Frameworks

TL;DR: In this article, a conceptual, chemistry-oriented theoretical description of the impact on the electronic structure of this extension from 1D to 2D was provided. But, such a view misses essential characteristics coming specifically from 2D lattice symmetry.
References
More filters
Book

Adsorption by Powders and Porous Solids: Principles, Methodology and Applications

TL;DR: In this paper, the authors provide an introductory review of the various theoretical and practical aspects of adsorption by powders and porous solids with particular reference to materials of technological importance.
Journal ArticleDOI

An ordered mesoporous organosilica hybrid material with a crystal-like wall structure.

TL;DR: The surfactant-mediated synthesis of an ordered benzene–silica hybrid material has an hexagonal array of mesopores and crystal-like pore walls that exhibit structural periodicity, and it is expected that other organosilicas and organo-metal oxides can be produced in a similar fashion, to yield a range of hierarchically ordered mesoporous solids with molecular-scale pore surface periodicity.
Journal ArticleDOI

Unified Approach to Pore Size Characterization of Microporous Carbonaceous Materials from N2, Ar, and CO2 Adsorption Isotherms†

TL;DR: In this paper, a unified approach to pore size characterization of microporous carbonaceous materials such as activated carbon and carbon fibers by nitrogen, argon, and carbon dioxide adsorption at standard temperatures, 77 K for N2 and Ar and 273 K for CO2, was presented.
Journal ArticleDOI

Adsorption Study of Surface and Structural Properties of MCM-41 Materials of Different Pore Sizes

TL;DR: In this paper, the pore size of MCM-41 materials was estimated based on geometrical considerations of the ratio of pore volume to pore wall volume for an infinite hexagonal array of cylindrical pores.
Related Papers (5)