scispace - formally typeset
Open AccessJournal ArticleDOI

Profiling of fine and coarse particle mass: case studies of Saharan dust and Eyjafjallajökull/Grimsvötn volcanic plumes

TLDR
In this paper, the polarization lidar photometer networking (POLIPHON) method introduced to separate coarse-mode and fine-mode particle properties of Eyjafjallajokull volcanic aerosols in 2010 is extended to cover Saharan dust events as well.
Abstract
. The polarization lidar photometer networking (POLIPHON) method introduced to separate coarse-mode and fine-mode particle properties of Eyjafjallajokull volcanic aerosols in 2010 is extended to cover Saharan dust events as well. Furthermore, new volcanic dust observations performed after the Grimsvotn volcanic eruptions in 2011 are presented. The retrieval of particle mass concentrations requires mass-specific extinction coefficients. Therefore, a review of recently published mass-specific extinction coefficients for Saharan dust and volcanic dust is given. Case studies of four different scenarios corroborate the applicability of the profiling technique: (a) Saharan dust outbreak to central Europe, (b) Saharan dust plume mixed with biomass-burning smoke over Cape Verde, and volcanic aerosol layers originating from (c) the Eyjafjallajokull eruptions in 2010 and (d) the Grimsvotn eruptions in 2011. Strong differences in the vertical aerosol layering, aerosol mixing, and optical properties are observed for the different volcanic events.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

An overview of the first decade of Polly NET : an emerging network of automated Raman-polarization lidars for continuous aerosol profiling

TL;DR: PollyNET as mentioned in this paper consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols.
Journal ArticleDOI

Quantification of Trans-Atlantic Dust Transport from Seven-year (2007-2013) Record of CALIPSO Lidar Measurements

TL;DR: In this paper, the authors provided an observation-based multi-year estimate of trans-Atlantic dust transport using a 7-year (2007-2013) record of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements of the three dimensional distribution of aerosol backscatter, extinction and depolarization ratio in both cloud-free and above-cloud conditions.
Journal ArticleDOI

Fine and coarse dust separation with polarization lidar

TL;DR: In this article, the polarization-lidar photometer networking (POLIPHON) method for separating dust and non-dust aerosol backscatter and extinction, volume, and mass concentration is extended to allow for a height-resolved separation of fine-mode and coarse-mode dust properties in addition.
References
More filters
Journal ArticleDOI

Optical Properties of Aerosols and Clouds: The Software Package OPAC

TL;DR: In this article, the optical properties of aerosols and clouds are described, including extinction, scattering, and absorption coefficients, single scattering albedo, asymmetry parameter, and phase function.
Journal ArticleDOI

A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements

TL;DR: The developed algorithm is adapted for the retrieval of aerosol properties from measurements made by ground-based Sun-sky scanning radiometers used in the Aerosol Robotic Network (AERONET) and allows a choice of normal or lognormal noise assumptions.
Journal ArticleDOI

Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols

TL;DR: In this paper, the spectral variation of α is typically not considered in the analysis and comparison of values from different techniques, and the spectral measurements of τ a from 340 to 1020 nm obtained from ground-based Aerosol Robotic Network radiometers located in various locations where either biomass burning, urban, or desert dust aerosols are prevalent.
Journal ArticleDOI

A review of biomass burning emissions part III: intensive optical properties of biomass burning particles

TL;DR: In this article, the authors review and discuss the literature concerning the measurement of smoke particle size, chemistry, thermodynamic properties, and emission factors, and show that very large differences in measured particle properties have appeared in the literature, in particular with regards to particle carbon budgets.
Related Papers (5)