scispace - formally typeset
Journal ArticleDOI

Rational Design of Three-Layered TiO2 @Carbon@MoS2 Hierarchical Nanotubes for Enhanced Lithium Storage.

Reads0
Chats0
TLDR
The rational design and synthesis of three-layered TiO2 @carbon@MoS2 hierarchical nanotubes for anode applications in lithium-ion batteries (LIBs) manifest remarkable lithium storage performance with good rate capability and long cycle life.
Abstract
Here we demonstrate the rational design and synthesis of three-layered TiO2 @carbon@MoS2 hierarchical nanotubes for anode applications in lithium-ion batteries (LIBs). Through an efficient step-by-step strategy, ultrathin MoS2 nanosheets are grown on nitrogen-doped carbon (NC) coated TiO2 nanotubes to achieve the TiO2 @NC@MoS2 tubular nanostructures. This smart design can effectively shorten the diffusion length of Li+ ions, increase electric conductivity of the electrode, relax volume variation of electrode materials upon cycling, and provide more active sites for electrochemical reactions. Owing to these structural and compositional features, the hierarchical TiO2 @NC@MoS2 nanotubes manifest remarkable lithium storage performance with good rate capability and long cycle life.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Hierarchical core/shell titanium dioxide/molybdenum disulfide nanosheets coupled with carbon architecture for superior lithium/sodium ion storage

TL;DR: In this article, a unique core/shell structure composite with diverse interfaces was successfully designed and fabricated via a facile coordination reaction combined with thermal treatment, which can elevate efficiency of energy storage and conversion.
Journal ArticleDOI

Highly efficient and stable Li extraction device by coupling Li4Ti5O12 electrode and matching perfluoro electrolyte

TL;DR: Li et al. as mentioned in this paper designed a triple-electrode device, using spinel Li4Ti5O12 and 1M LiPF6/FEC + FEMC + HFE respectively as a temporary carrier for storing Li-ions and perfluorinated electrolyte.
Journal ArticleDOI

Hollow MoS2 tetrapods for high-performance potassium-ion storage

TL;DR: In this article , MoS2 nanoflakes were purposefully stacked to construct hollow tetrapod structure, which showed great development prospects as a powerful anode material in potassium-ion-battery realm.
Journal ArticleDOI

Surface phosphation of 3D mesoporous NiCo2O4 nanowire arrays as bifunctional anodes for lithium and sodium ion batteries

TL;DR: In this article, a surface phosphate strategy was adopted to dramatically improve the charge transport, ion diffusion, electroactive sites, and cycle stability of mesoporous NiCo2O4 nanowire arrays (NWAs), drastically boosting their electrochemical properties.
References
More filters
Journal ArticleDOI

Issues and challenges facing rechargeable lithium batteries

TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Journal ArticleDOI

Building better batteries

TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Journal ArticleDOI

The Li-ion rechargeable battery: a perspective.

TL;DR: New strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively.
Journal ArticleDOI

Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.

TL;DR: It is reported that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells.
Journal ArticleDOI

What Are Batteries, Fuel Cells, and Supercapacitors?

TL;DR: Batteries, fuel cells and supercapacitors belong to the same family of energy conversion devices and are needed to service the wide energy requirements of various devices and systems.
Related Papers (5)