scispace - formally typeset
Journal ArticleDOI

Reactive oxygen species in tumor progression.

Peter Storz
- 01 May 2005 - 
- Vol. 10, Iss: 2, pp 1881-1896
TLDR
The finding that a diet rich in antioxidants or the elimination of ROS by antioxidant compounds prevents the development of certain cancers provided the setting for subsequent investigation of the tumorigenic actions of reactive oxygen species.
Abstract
The generation of reactive oxygen radicals in mammalian cells profoundly affects numerous critical cellular functions, and the absence of efficient cellular detoxification mechanisms which remove these radicals can result in several human diseases. Growing evidence suggests that reactive oxygen species (ROS) within cells act as second messengers in intracellular signaling cascades which induce and maintain the oncogenic phenotype of cancer cells. ROS are tumorigenic by virtue of their ability to increase cell proliferation, survival, cellular migration, and also by inducing DNA damage leading to genetic lesions that initiate tumorigenicity and sustain subsequent tumor progression. However, it is also known that ROS can induce cellular senescence and cell death and can therefore function as anti-tumorigenic agents. Therefore, the mechanisms by which cells respond to reactive oxygen species depends on the molecular background of cell and tissues, the location of ROS production and the concentration of individual ROS species. Carcinoma cells produce ROS at elevated rates in vitro, and in vivo many tumors appear persistent to oxidative stress. Thus, the finding that a diet rich in antioxidants or the elimination of ROS by antioxidant compounds prevents the development of certain cancers provided the setting for subsequent investigation of the tumorigenic actions of reactive oxygen species. This review outlines the current knowledge on the various roles of ROS in tumor development and progression.

read more

Citations
More filters
Journal ArticleDOI

Free radicals and antioxidants in normal physiological functions and human disease

TL;DR: Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, rheumatoid arthritis, and ageing.
Journal ArticleDOI

Free radicals, metals and antioxidants in oxidative stress-induced cancer

TL;DR: This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process and the role of enzymatic and non-enzymatic antioxidants in the process of carcinogenesis as well as the antioxidant interactions with various regulatory factors.
Journal ArticleDOI

Oxidative Stress, Inflammation, and Cancer: How Are They Linked?

TL;DR: Observations to date suggest that oxidative stress, chronic inflammation, and cancer are closely linked.
Journal ArticleDOI

Reactive oxygen species in cancer

TL;DR: The generation of ROS within tumour cells, their detoxification, their cellular effects, as well as the major signalling cascades they utilize are discussed, but also an outlook on their modulation in therapeutics is provided.
Journal ArticleDOI

Mammalian Rho GTPases: new insights into their functions from in vivo studies.

TL;DR: The recent availability of knockout mice for several members of the Rho family reveals new information about their roles in signalling to the cytoskeleton and in development.
References
More filters
Journal ArticleDOI

Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor

TL;DR: It is demonstrated that Akt also regulates the activity of FKHRL1, a member of the Forkhead family of transcription factors, which triggers apoptosis most likely by inducing the expression of genes that are critical for cell death, such as the Fas ligand gene.
Journal ArticleDOI

Death receptors: signaling and modulation

Avi Ashkenazi, +1 more
- 28 Aug 1998 - 
TL;DR: Apoptosis is a cell suicide mechanism that enables metazoans to control cell number in tissues and to eliminate individual cells that threaten the animal's survival.
Journal ArticleDOI

Hypoxia — a key regulatory factor in tumour growth

TL;DR: Cells undergo a variety of biological responses when placed in hypoxic conditions, including activation of signalling pathways that regulate proliferation, angiogenesis and death, and many elements of the hypoxia-response pathway are good candidates for therapeutic targeting.
Journal ArticleDOI

Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan

TL;DR: The potent activator resveratrol, a polyphenol found in red wine, lowers the Michaelis constant of SIRT1 for both the acetylated substrate and NAD+, and increases cell survival by stimulating Sirt1-dependent deacetylation of p53.
Related Papers (5)