scispace - formally typeset
Open AccessJournal ArticleDOI

Synthesis of 2D Layered BiI3 Nanoplates, BiI3/WSe2van der Waals Heterostructures and Their Electronic, Optoelectronic Properties

Reads0
Chats0
TLDR
The synthesis of the BiI3 nanoplates can expand the library of 2DLMs and enable a wider range of van der Waals heterostructures, including p-n diode characteristics with gate-tunable rectification behavior and distinct photovoltaic effect.
Abstract
Two-dimensional layered materials (2DLMs) have attracted considerable recent interest as a new material platform for fundamental materials science and potential new technologies. Here we report the growth of layered metal halide materials and their optoelectronic properties. BiI3 nanoplates can be readily grown on SiO2 /Si substrates with a hexagonal geometry, with a thickness in the range of 10-120 nm and a lateral dimension of 3-10 µm. Transmission electron microscopy and electron diffraction studies demonstrate that the individual nanoplates are high quality single crystals. Micro-Raman studies show characteristic Ag band at ≈115 cm-1 with slight red-shift with decreasing thickness, and micro-photoluminescence studies show uniform emission around 690 nm with blue-shift with decreasing thickness. Electrical transport studies of individual nanoplates show n-type semiconductor characteristics with clear photoresponse. Further, the BiI3 can be readily grown on other 2DLMs (e.g., WSe2 ) to form van der Waals heterostructures. Electrical transport measurements of BiI3 /WSe2 vertical heterojunctions demonstrate p-n diode characteristics with gate-tunable rectification behavior and distinct photovoltaic effect. The synthesis of the BiI3 nanoplates can expand the library of 2DLMs and enable a wider range of van der Waals heterostructures.

read more

Citations
More filters
Journal ArticleDOI

2D Layered Material-Based van der Waals Heterostructures for Optoelectronics

TL;DR: In this article, the authors reviewed the state-of-the-art research activities that focus on the 2D van der Waals heterostructures and their optoelectronic applications.
Journal ArticleDOI

Novel structured transition metal dichalcogenide nanosheets

TL;DR: This review focuses on the most recent important discoveries in the preparation, characterization and application of these new-structured ultrathin 2D layered TMDs.
Journal Article

Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties

TL;DR: In this paper, the authors demonstrate a systematic control of the electronic properties of 2D-TMDs by creating mixed alloys of the intrinsically p-type WSe2 and intrinsically n-type WS2 with variable alloy compositions and show that a series of WS2xSe2-2x alloy nanosheets can be synthesized with fully tunable chemical compositions and optical properties.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

Single-layer MoS2 transistors

TL;DR: Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors, and could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets

TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Journal ArticleDOI

Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors

TL;DR: A chemical route to produce graphene nanoribbons with width below 10 nanometers was developed, as well as single ribbons with varying widths along their lengths or containing lattice-defined graphene junctions for potential molecular electronics.
Related Papers (5)