scispace - formally typeset
Journal ArticleDOI

The Myc/Max/Mad Network and the Transcriptional Control of Cell Behavior

TLDR
The Myc/Max/Mad network comprises a group of transcription factors whose distinct interactions result in gene-specific transcriptional activation or repression and can be viewed as a functional module which acts to convert environmental signals into specific gene-regulatory programs.
Abstract
The Myc/Max/Mad network comprises a group of transcription factors whose distinct interactions result in gene-specific transcriptional activation or repression. A great deal of research indicates that the functions of the network play roles in cell proliferation, differentiation, and death. In this review we focus on the Myc and Mad protein families and attempt to relate their biological functions to their transcriptional activities and gene targets. Both Myc and Mad, as well as the more recently described Mnt and Mga proteins, form heterodimers with Max, permitting binding to specific DNA sequences. These DNA-bound heterodimers recruit coactivator or corepressor complexes that generate alterations in chromatin structure, which in turn modulate transcription. Initial identification of target genes suggests that the network regulates genes involved in the cell cycle, growth, life span, and morphology. Because Myc and Mad proteins are expressed in response to diverse signaling pathways, the network can be viewed as a functional module which acts to convert environmental signals into specific gene-regulatory programs.

read more

Citations
More filters
Journal ArticleDOI

Histone deacetylases (HDACs): characterization of the classical HDAC family

TL;DR: In this paper, a comprehensive overview of the structure, function and tissue distribution of members of the classical histone deacetylase (HDAC) family, in order to gain insight into the regulation of gene expression through HDAC activity is presented.
Journal ArticleDOI

Direct observation of individual endogenous protein complexes in situ by proximity ligation

TL;DR: This method is used to show specific regulation of protein-protein interactions between endogenous Myc and Max oncogenic transcription factors in response to interferon-γ (IFN-γ) signaling and low-molecular-weight inhibitors.
Journal ArticleDOI

Reflecting on 25 years with MYC

TL;DR: Just over 25 years ago, MYC, the human homologue of a retroviral oncogene, was identified and each incremental insight into MYC regulation and function has had an impact on numerous biological disciplines, including the understanding of molecular oncogenesis in general.
Journal ArticleDOI

ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis

TL;DR: The identification of ICE1 (inducer of CBF expression 1), an upstream transcription factor that regulates the transcription of CBFs genes in the cold, and its overexpression in wild-type plants enhances the expression of the CBF regulon in thecold and improves freezing tolerance of the transgenic plants.
References
More filters
Journal ArticleDOI

Genetic instabilities in human cancers

TL;DR: There is now evidence that most cancers may indeed be genetically unstable, but that the instability exists at two distinct levels, and recognition and comparison of these instabilities are leading to new insights into tumour pathogenesis.
Journal ArticleDOI

From molecular to modular cell biology.

TL;DR: General principles that govern the structure and behaviour of modules may be discovered with help from synthetic sciences such as engineering and computer science, from stronger interactions between experiment and theory in cell biology, and from an appreciation of evolutionary constraints.
Journal ArticleDOI

Induction of apoptosis in fibroblasts by c-myc protein

TL;DR: It is demonstrated that deregulated c-myc expression induces apoptosis in cells growth arrested by a variety of means and at various points in the cell cycle.
Journal ArticleDOI

Histone acetylation in chromatin structure and transcription

TL;DR: The amino termini of histones extend from the nucleosomal core and are modified by acetyltransferases and deacetylases during the cell cycle, which may direct histone assembly and help regulate the unfolding and activity of genes.
Journal ArticleDOI

Molecular Bases for Circadian Clocks

TL;DR: It used to be that research in chronobiology moved biochemical functions [transcriptional activators], the along at a gentlemanly pace, but by mid 1997 the word in determining what the authors perceive as time was PASWCCLK.
Related Papers (5)