scispace - formally typeset
Search or ask a question

Showing papers in "Biochemical Journal in 2003"


Journal ArticleDOI
TL;DR: This review focuses on recent progress in the understanding of the molecular mechanisms of IL-6-type cytokine signal transduction, with emphasis on the termination and modulation of the JAK/STAT signalling pathway mediated by tyrosine phosphatases, the SOCS (suppressor of cytokine signalling) feedback inhibitors and PIAS (protein inhibitor of activated STAT) proteins.
Abstract: The IL (interleukin)-6-type cytokines IL-6, IL-11, LIF (leukaemia inhibitory factor), OSM (oncostatin M), ciliary neurotrophic factor, cardiotrophin-1 and cardiotrophin-like cytokine are an important family of mediators involved in the regulation of the acute-phase response to injury and infection. Besides their functions in inflammation and the immune response, these cytokines play also a crucial role in haematopoiesis, liver and neuronal regeneration, embryonal development and fertility. Dysregulation of IL-6-type cytokine signalling contributes to the onset and maintenance of several diseases, such as rheumatoid arthritis, inflammatory bowel disease, osteoporosis, multiple sclerosis and various types of cancer (e.g. multiple myeloma and prostate cancer). IL-6-type cytokines exert their action via the signal transducers gp (glycoprotein) 130, LIF receptor and OSM receptor leading to the activation of the JAK/STAT (Janus kinase/signal transducer and activator of transcription) and MAPK (mitogen-activated protein kinase) cascades. This review focuses on recent progress in the understanding of the molecular mechanisms of IL-6-type cytokine signal transduction. Emphasis is put on the termination and modulation of the JAK/STAT signalling pathway mediated by tyrosine phosphatases, the SOCS (suppressor of cytokine signalling) feedback inhibitors and PIAS (protein inhibitor of activated STAT) proteins. Also the cross-talk between the JAK/STAT pathway with other signalling cascades is discussed.

3,050 citations


Journal ArticleDOI
TL;DR: In this paper, a comprehensive overview of the structure, function and tissue distribution of members of the classical histone deacetylase (HDAC) family, in order to gain insight into the regulation of gene expression through HDAC activity is presented.
Abstract: Transcriptional regulation in eukaryotes occurs within a chromatin setting, and is strongly influenced by the post-translational modification of histones, the building blocks of chromatin, such as methylation, phosphorylation and acetylation. Acetylation is probably the best understood of these modifications: hyperacetylation leads to an increase in the expression of particular genes, and hypoacetylation has the opposite effect. Many studies have identified several large, multisubunit enzyme complexes that are responsible for the targeted deacetylation of histones. The aim of this review is to give a comprehensive overview of the structure, function and tissue distribution of members of the classical histone deacetylase (HDAC) family, in order to gain insight into the regulation of gene expression through HDAC activity. SAGE (serial analysis of gene expression) data show that HDACs are generally expressed in almost all tissues investigated. Surprisingly, no major differences were observed between the expression pattern in normal and malignant tissues. However, significant variation in HDAC expression was observed within tissue types. HDAC inhibitors have been shown to induce specific changes in gene expression and to influence a variety of other processes, including growth arrest, differentiation, cytotoxicity and induction of apoptosis. This challenging field has generated many fascinating results which will ultimately lead to a better understanding of the mechanism of gene transcription as a whole.

2,822 citations


Journal ArticleDOI
TL;DR: The results suggest that the combined use of Roscovitine and Kenpaullone may be useful for identifying substrates and physiological roles of cyclin-dependent protein kinases, whereas the combineduse of Kenp Paullone and LiCl may be Useful for identifying substrateates and physiology roles of glycogen synthase kinase 3.
Abstract: We have previously examined the specificities of 28 commercially available compounds, reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases [Davies, Reddy, Caivano and Cohen (2000) Biochem. J. 351, 95-105]. In the present study, we have extended this analysis to a further 14 compounds. Of these, indirubin-3'-monoxime, SP 600125, KT 5823 and ML-9 were found to inhibit a number of protein kinases and conclusions drawn from their use in cell-based assays are likely to be erroneous. Kenpaullone, Alsterpaullone, Purvalanol, Roscovitine, pyrazolopyrimidine 1 (PP1), PP2 and ML-7 were more specific, but still inhibited two or more protein kinases with similar potency. Our results suggest that the combined use of Roscovitine and Kenpaullone may be useful for identifying substrates and physiological roles of cyclin-dependent protein kinases, whereas the combined use of Kenpaullone and LiCl may be useful for identifying substrates and physiological roles of glycogen synthase kinase 3. The combined use of SU 6656 and either PP1 or PP2 may be useful for identifying substrates of Src family members. Epigallocatechin 3-gallate, one of the main polyphenolic constituents of tea, inhibited two of the 28 protein kinases in the panel, dual-specificity, tyrosine-phosphorylated and regulated kinase 1A (DYRK1A; IC(50)=0.33 microM) and p38-regulated/activated kinase (PRAK; IC(50)=1.0 microM).

1,412 citations


Journal ArticleDOI
TL;DR: A mechanistic basis of the observation that CK2 is essential for viability may reside in part in this ability to protect cellular proteins from caspase action, which may contribute to its ability to participate in transformation and tumorigenesis.
Abstract: Protein kinase CK2 (9casein kinase II9) has traditionally been classified as a messenger-independent protein serine/threonine kinase that is typically found in tetrameric complexes consisting of two catalytic (α and/or α′) subunits and two regulatory β subunits. Accumulated biochemical and genetic evidence indicates that CK2 has a vast array of candidate physiological targets and participates in a complex series of cellular functions, including the maintenance of cell viability. This review summarizes current knowledge of the structural and enzymic features of CK2, and discusses advances that challenge traditional views of this enzyme. For example, the recent demonstrations that individual CK2 subunits exist outside tetrameric complexes and that CK2 displays dual-specificity kinase activity raises new prospects for the precise elucidation of its regulation and cellular functions. This review also discusses a number of the mechanisms that contribute to the regulation of CK2 in cells, and will highlight emerging insights into the role of CK2 in cellular decisions of life and death. In this latter respect, recent evidence suggests that CK2 can exert an anti-apoptotic role by protecting regulatory proteins from caspase-mediated degradation. The mechanistic basis of the observation that CK2 is essential for viability may reside in part in this ability to protect cellular proteins from caspase action. Furthermore, this anti-apoptotic function of CK2 may contribute to its ability to participate in transformation and tumorigenesis.

1,181 citations


Journal ArticleDOI
TL;DR: It is demonstrated that induction of HO-1 by curcumin and CAPE requires the activation of the Nrf2/ARE pathway, and using antibodies and specific inhibitors of the mitogen-activated protein kinase (MAPK) pathways, data is provided implicating p38 MAPK inCurcumin-mediated ho-1 induction.
Abstract: The transcription factor Nrf2, which normally exists in an inactive state as a consequence of binding to a cytoskeleton-associated protein Keap1, can be activated by redox-dependent stimuli. Alteration of the Nrf2–Keap1 interaction enables Nrf2 to translocate to the nucleus, bind to the antioxidant-responsive element (ARE) and initiate the transcription of genes coding for detoxifying enzymes and cytoprotective proteins. This response is also triggered by a class of electrophilic compounds including polyphenols and plant-derived constituents. Recently, the natural antioxidants curcumin and caffeic acid phenethyl ester (CAPE) have been identified as potent inducers of haem oxygenase-1 (HO-1), a redox-sensitive inducible protein that provides protection against various forms of stress. Here, we show that in renal epithelial cells both curcumin and CAPE stimulate the expression of Nrf2 in a concentration- and time-dependent manner. This effect was associated with a significant increase in HO-1 protein expression and haem oxygenase activity. From several lines of investigation we also report that curcumin (and, by inference, CAPE) stimulates ho-1 gene activity by promoting inactivation of the Nrf2–Keap1 complex, leading to increased Nrf2 binding to the resident ho-1 AREs. Moreover, using antibodies and specific inhibitors of the mitogen-activated protein kinase (MAPK) pathways, we provide data implicating p38 MAPK in curcumin-mediated ho-1 induction. Taken together, these results demonstrate that induction of HO-1 by curcumin and CAPE requires the activation of the Nrf2/ARE pathway.

970 citations


Journal ArticleDOI
TL;DR: The development of drugs such as DFMO (alpha-difluoromethylornithine), a rationally designed anticancer agent, has revolutionized the authors' understanding of polyamine function in cell growth and provided 'proof of concept' that influencing polyamine metabolism and content within tumour cells will prevent tumour growth.
Abstract: Polyamines are essential for the growth and function of normal cells. They interact with various macromolecules, both electrostatically and covalently and, as a consequence, have a variety of cellular effects. The complexity of polyamine metabolism and the multitude of compensatory mechanisms that are invoked to maintain polyamine homoeostasis argue that these amines are critical to cell survival. The regulation of polyamine content within cells occurs at several levels, including transcription and translation. In addition, novel features such as the +1 frameshift required for antizyme production and the rapid turnover of several of the enzymes involved in the pathway make the regulation of polyamine metabolism a fascinating subject. The link between polyamine content and human disease is unequivocal, and significant success has been obtained in the treatment of a number of parasitic infections. Targeting the polyamine pathway as a means of treating cancer has met with limited success, although the development of drugs such as DFMO (alpha-difluoromethylornithine), a rationally designed anticancer agent, has revolutionized our understanding of polyamine function in cell growth and provided 'proof of concept' that influencing polyamine metabolism and content within tumour cells will prevent tumour growth. The more recent development of the polyamine analogues has been pivotal in advancing our understanding of the necessity to deplete all three polyamines to induce apoptosis in tumour cells. The current thinking is that the polyamine inhibitors/analogues may also be useful agents in the chemoprevention of cancer and, in this area, we may yet see a revival of DFMO. The future will be in adopting a functional genomics approach to identifying polyamine-regulated genes linked to either carcinogenesis or apoptosis.

896 citations


Journal ArticleDOI
TL;DR: This review focuses on how phosphorylation at each of these sites regulates the maturation, signalling and down-regulation of PKC as a paradigm for how these sites control the function of the ABC kinases.
Abstract: Phosphorylation plays a central role in regulating the activation and signalling lifetime of protein kinases A, B (also known as Akt) and C. These kinases share three conserved phosphorylation motifs: the activation loop segment, the turn motif and the hydrophobic motif. This review focuses on how phosphorylation at each of these sites regulates the maturation, signalling and down-regulation of PKC as a paradigm for how these sites control the function of the ABC kinases.

800 citations


Journal ArticleDOI
TL;DR: PDE4 enzymes stand at a crossroads that allows them to integrate various signalling pathways with that of cAMP in spatially distinct compartments, and the recent elucidation of the structure of the PDE4 catalytic unit allows for molecular insight into the mode of catalysis as well as substrate and inhibitor selectivity.
Abstract: cAMP is a second messenger that controls many key cellular functions. The only way to inactivate cAMP is to degrade it through the action of cAMP phosphodiesterases (PDEs). PDEs are thus poised to play a key regulatory role. PDE4 cAMP-specific phosphodiesterases appear to have specific functions with selective inhibitors serving as potent anti-inflammatory agents. The recent elucidation of the structure of the PDE4 catalytic unit allows for molecular insight into the mode of catalysis as well as substrate and inhibitor selectivity. The four PDE4 genes encode over 16 isoforms, each of which is characterized by a unique N-terminal region. PDE4 isoforms play a pivotal role in controlling functionally and spatially distinct pools of cAMP by virtue of their unique intracellular targeting. Targeting occurs by association with proteins, such as arrestins, SRC family tyrosyl kinases, A-kinase anchoring proteins ('AKAPs') and receptor for activated C kinase 1 ('RACK1'), and, in the case of isoform PDE4A1, by a specific interaction (TAPAS-1) with phosphatidic acid. PDE4 isoforms are 'designed' to be regulated by extracellular-signal-related protein kinase (ERK), which binds to anchor sites on the PDE4 catalytic domain that it phosphorylates. The upstream conserved region 1 (UCR1) and 2 (UCR2) modules that abut the PDE4 catalytic unit confer regulatory functions by orchestrating the functional outcome of phosphorylation by cAMP-dependent protein kinase ('PKA') and ERK. PDE4 enzymes stand at a crossroads that allows them to integrate various signalling pathways with that of cAMP in spatially distinct compartments.

756 citations


Journal ArticleDOI
TL;DR: Different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases.
Abstract: The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases.

699 citations


Journal ArticleDOI
TL;DR: The AGE induction of extracellular-signal-related kinase phosphorylation and vascular endothelial growth factor in EC and of the growth and cord-like structure formation of EC was abolished completely by C-truncated RAGE, indicating that this endogenous secretory receptor (endogenous secretory RAGE) is cytoprotective against AGE.
Abstract: The binding of advanced glycation end-products (AGE) to the receptor for AGE (RAGE) is known to deteriorate various cell functions and is implicated in the pathogenesis of diabetic vascular complications. In the present study, we show that the cellular constituents of small vessels, endothelial cells (EC) and pericytes express novel splice variants of RAGE mRNA coding for the isoforms that lack the N-terminal V-type immunoglobulin-like domain (N-truncated) or the C-terminal transmembrane domain (C-truncated), as well as the known full-length mRNA. The ratio of the expression of the three variants was different between EC and pericytes; the content of the C-truncated form was highest in EC, whereas the full-length form was the most abundant in pericytes. Transfection experiments with COS-7 cells demonstrated that those variant mRNAs were translated into proteins as deduced; C-truncated RAGE was efficiently secreted into the culture media, and N-truncated RAGE was located mainly on the plasma membrane. The three isoforms were also detected in primary cultured human EC and pericytes. Further, full-length and C-truncated forms of RAGE bound to an AGE-conjugated column, whereas N-truncated RAGE did not. The AGE induction of extracellular-signal-related kinase phosphorylation and vascular endothelial growth factor in EC and of the growth and cord-like structure formation of EC was abolished completely by C-truncated RAGE, indicating that this endogenous secretory receptor (endogenous secretory RAGE) is cytoprotective against AGE. The results may contribute to our understanding of the molecular basis for the diversity of cellular responses to AGE and for individual variations in the susceptibility to diabetic vascular complications.

688 citations


Journal ArticleDOI
TL;DR: A survey of the known biochemical features of these unique enzymes and their proposed catalytic mechanism is provided, suggesting that polyester synthases belong to the alpha/beta-hydrolase superfamily, with a conserved cysteine residue as catalytic nucleophile.
Abstract: Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with a conserved cysteine residue as catalytic nucleophile. This review provides a survey of the known biochemical features of these unique enzymes and their proposed catalytic mechanism.

Journal ArticleDOI
TL;DR: Comprehensive screening of glycation adducts revealed the relative and quantitative importance of alpha-oxoaldehyde-derived advanced glycation endproducts in physiological modification of proteins-particularly hydroimidazolones, the efficient renal clearance of freeAdducts, and the marked increases in glycationadducts in diabetes and uraemia.
Abstract: Glycation of proteins forms fructosamines and advanced glycation endproducts. Glycation adducts may be risk markers and risk factors of disease development. We measured the concentrations of the early glycation adduct fructosyl-lysine and 12 advanced glycation endproducts by liquid chromatography with tandem mass spectrometric detection. Underivatized analytes were detected free in physiological fluids and in enzymic hydrolysates of cellular and extracellular proteins. Hydroimidazolones were the most important glycation biomarkers quantitatively; monolysyl adducts (N(epsilon)-carboxymethyl-lysine and N(epsilon)-1-carboxyethyl-lysine) were found in moderate amounts, and bis(lysyl)imidazolium cross-links and pentosidine in lowest amounts. Quantitative screening showed high levels of advanced glycation endproducts in cellular protein and moderate levels in protein of blood plasma. Glycation adduct accumulation in tissues depended on the particular adduct and tissue type. Low levels of free advanced glycation endproducts were found in blood plasma and levels were 10-100-fold higher in urine. Advanced glycation endproduct residues were increased in blood plasma and at sites of vascular complications development in experimental diabetes; renal glomeruli, retina and peripheral nerve. In clinical uraemia, the concentrations of plasma protein advanced glycation endproduct residues increased 1-7-fold and free adduct concentrations increased up to 50-fold. Comprehensive screening of glycation adducts revealed the relative and quantitative importance of alpha-oxoaldehyde-derived advanced glycation endproducts in physiological modification of proteins-particularly hydroimidazolones, the efficient renal clearance of free adducts, and the marked increases of glycation adducts in diabetes and uraemia-particularly free advanced glycation endproducts in uraemia. Increased levels of these advanced glycation endproducts were associated with vascular complications in diabetes and uraemia.

Journal ArticleDOI
TL;DR: Examination of wild-type and nrf2 (-/-) mouse embryonic fibroblasts demonstrated that Nrf2 is essential for both constitutive expression of NQO1 and its induction by sulphoraphane, indicating that distinct AREs have differential sequence requirements, and a universally applicable consensus sequence cannot be derived.
Abstract: NQO1 [NAD(P)H:quinone oxidoreductase 1] has an integral role in cellular responses to oxidative stress The expression of NQO1 is up-regulated in the mouse following challenge with electrophilic chemicals, in an Nrf2 (NF-E2 p45-related factor 2)-dependent fashion, but the molecular basis for this observation remains unexplained Through characterization of the murine nqo1 5'-upstream region, we now show that Nrf2 regulates this gene directly via an ARE (antioxidant response element) that lies within a 24 bp region spanning nt -444 to -421 A comprehensive mutation study of this ARE revealed that it does not conform to the currently accepted ARE consensus sequence [(5'-TMAnnRTGAYnnnGCRwwww-3', with essential nucleotides shown in capitals); two cytosine residues (shown in bold in the following sequence) that have been designated 'n' previously because they were thought to be redundant (5'-gagTcA C aGTgAGt C ggCAaaatt-3') have now been found to be essential for enhancer activity; two guanines (also shown in bold) previously regarded as essential for ARE function (5'-gagTcACaGT g AGtCg g CAaaatt-3') have proven to be dispensable] Examination of wild-type and nrf2 (-/-) mouse embryonic fibroblasts demonstrated that Nrf2 is essential for both constitutive expression of NQO1 and its induction by sulphoraphane Electrophoretic mobility-shift and chromatin immunoprecipitation assays revealed that Nrf2 associates, in low amounts, with the nqo1 ARE under constitutive conditions, and following sulphoraphane challenge of cells, Nrf2 is recruited to the ARE in substantially greater quantities, as a heterodimer with the small Maf (musculoaponeurotic fibrosarcoma virus) protein, MafK Also, MafK was found to bind the nqo1 ARE in an Nrf2-independent fashion, and may contribute to transcriptional repression of the oxidoreductase gene These findings allow a model for transcriptional control of nqo1 through the ARE to be proposed Furthermore, our results indicate that distinct AREs have differential sequence requirements, and a universally applicable consensus sequence cannot be derived

Journal ArticleDOI
TL;DR: By virtue of their ability to bind, in a stimulus-dependent fashion, to 7MSRs as well as to different classes of cellular proteins, beta-arrestins serve as versatile adapter proteins that regulate the signalling and trafficking of the receptors.
Abstract: Beta-arrestins are cytosolic proteins that bind to activated and phosphorylated G-protein-coupled receptors [7MSRs (seven-membrane-spanning receptors)] and uncouple them from G-protein-mediated second messenger signalling pathways. The binding of beta-arrestins to 7MSRs also leads to new signals via activation of MAPKs (mitogen-activated protein kinases) such as JNK3 (c-Jun N-terminal kinase 3), ERK1/2 (extracellular-signal-regulated kinase 1/2) and p38 MAPKs. By binding to endocytic proteins [clathrin, AP2 (adapter protein 2), NSF (N -ethylmaleimide-sensitive fusion protein) and ARF6 (ADP-ribosylation factor 6)], beta-arrestins also serve as adapters to link the receptors to the cellular trafficking machinery. Agonist-promoted ubiquitination of beta-arrestins is a prerequisite for their role in receptor internalization, as well as a determinant of the differing trafficking patterns of distinct classes of receptors. Recently, beta-arrestins have also been implicated as playing novel roles in cellular chemotaxis and apoptosis. By virtue of their ability to bind, in a stimulus-dependent fashion, to 7MSRs as well as to different classes of cellular proteins, beta-arrestins serve as versatile adapter proteins that regulate the signalling and trafficking of the receptors.

Journal ArticleDOI
TL;DR: Ceramide formation serves many different functions at distinct locations in the cell, including the breakdown of plasma membrane sphingomyelin to ceramide is a consequence of lipid scrambling, and may regulate apoptotic body formation.
Abstract: The physiological role of ceramide formation in response to cell stimulation remains controversial. Here, we emphasize that ceramide is not a priori an apoptotic signalling molecule. Recent work points out that the conversion of sphingomyelin into ceramide can play a membrane structural (physical) role, with consequences for membrane microdomain function, membrane vesiculation, fusion/fission and vesicular trafficking. These processes contribute to cellular signalling. At the Golgi, ceramide takes part in a metabolic flux towards sphingomyelin, diacylglycerol and glycosphingolipids, which drives lipid raft formation and vesicular transport towards the plasma membrane. At the cell surface, receptor clustering in lipid rafts and the formation of endosomes can be facilitated by transient ceramide formation. Also, signalling towards mitochondria may involve glycosphingolipid-containing vesicles. Ceramide may affect the permeability of the mitochondrial outer membrane and the release of cytochrome c. In the effector phase of apoptosis, the breakdown of plasma membrane sphingomyelin to ceramide is a consequence of lipid scrambling, and may regulate apoptotic body formation. Thus ceramide formation serves many different functions at distinct locations in the cell. Given the limited capacity for spontaneous intracellular diffusion or membrane flip-flop of natural ceramide species, the topology and membrane sidedness of ceramide generation are crucial determinants of its impact on cell biology.

Journal ArticleDOI
TL;DR: The data reveal that SePP plays a pivotal role in delivering hepatic selenium to target tissues and thatSelenium content was elevated in liver, but low in plasma and other tissues, and selenoenzyme activities changed accordingly.
Abstract: Selenoprotein P (SePP), the major selenoprotein in plasma, has been implicated in selenium transport, selenium detoxification or antioxidant defence. We generated SePP-knockout mice that were viable, but exhibited reduced growth and developed ataxia. Selenium content was elevated in liver, but low in plasma and other tissues, and selenoenzyme activities changed accordingly. Our data reveal that SePP plays a pivotal role in delivering hepatic selenium to target tissues.

Journal ArticleDOI
TL;DR: The properties of RecQ helicases in organisms from bacteria to humans are reviewed, with an emphasis on the biochemical functions of these enzymes and the range of protein partners that they operate with.
Abstract: The RecQ helicases represent a subfamily of DNA helicases that are highly conserved in evolution. Loss of RecQ helicase function leads to a breakdown in the maintenance of genome integrity, in particular hyper-recombination. Germ-line defects in three of the five known human RecQ helicases give rise to defined genetic disorders associated with cancer predisposition and/or premature aging. These are Bloom's syndrome, Werner's syndrome and Rothmund-Thomson syndrome, which are caused by defects in the genes BLM, WRN and RECQ4 respectively. Here we review the properties of RecQ helicases in organisms from bacteria to humans, with an emphasis on the biochemical functions of these enzymes and the range of protein partners that they operate with. We will discuss models in which RecQ helicases are required to protect against replication fork demise, either through prevention of fork breakdown or restoration of productive DNA synthesis.

Journal ArticleDOI
TL;DR: Evidence supporting the idea that distinct amino acid "receptors" function to detect and transmit certain nutrient stimuli in higher eukaryotes is reviewed, and the role that amino acid transporters may play in the sensing of amino acid levels is focused on.
Abstract: Amino acid availability regulates cellular physiology by modulating gene expression and signal transduction pathways. However, although the signalling intermediates between nutrient availability and altered gene expression have become increasingly well documented, how eukaryotic cells sense the presence of either a nutritionally rich or deprived medium is still uncertain. From recent studies it appears that the intracellular amino acid pool size is particularly important in regulating translational effectors, thus, regulated transport of amino acids across the plasma membrane represents a means by which the cellular response to amino acids could be controlled. Furthermore, evidence from studies with transportable amino acid analogues has demonstrated that flux through amino acid transporters may act as an initiator of nutritional signalling. This evidence, coupled with the substrate selectivity and sensitivity to nutrient availability classically associated with amino acid transporters, plus the recent discovery of transporter-associated signalling proteins, demonstrates a potential role for nutrient transporters as initiators of cellular nutrient signalling. Here, we review the evidence supporting the idea that distinct amino acid "receptors" function to detect and transmit certain nutrient stimuli in higher eukaryotes. In particular, we focus on the role that amino acid transporters may play in the sensing of amino acid levels, both directly as initiators of nutrient signalling and indirectly as regulators of external amino acid access to intracellular receptor/signalling mechanisms.

Journal ArticleDOI
TL;DR: Microdomains are a consequence of these solutions, in which cAMP dynamics may differ from the broad cytosol, and are beginning to reveal cAMP fluctuations in these various compartments.
Abstract: Adenylyl cyclases are a critically important family of multiply regulated signalling molecules. Their susceptibility to many modes of regulation allows them to integrate the activities of a variety of signalling pathways. However, this property brings with it the problem of imparting specificity and discrimination. Recent studies are revealing the range of strategies utilized by the cyclases to solve this problem. Microdomains are a consequence of these solutions, in which cAMP dynamics may differ from the broad cytosol. Currently evolving methodologies are beginning to reveal cAMP fluctuations in these various compartments.

Journal ArticleDOI
TL;DR: Results suggest that PpcA serves as an intermediary electron carrier from acetate to terminal Fe(III) reductases in the outer membrane, and is also involved in the transfer of electrons from acetates to U(VI) and humics.
Abstract: A 9.6 kDa periplasmic c -type cytochrome, designated PpcA, was purified from the Fe(III)-reducing bacterium Geobacter sulfurreducens and characterized. The purified protein is basic (pI 9.5), contains three haems and has an N-terminal amino acid sequence closely related to those of the previously described trihaem c (7) cytochromes of Geobacter metallireducens and Desulfuromonas acetoxidans. The gene encoding PpcA was identified from the G. sulfurreducens genome using the N-terminal sequence, and encodes a protein of 71 amino acids (molecular mass 9.58 kDa) with 49% identity to the c (7) cytochrome of D. acetoxidans. In order to determine the physiological role of PpcA, a knockout mutant was prepared with a single-step recombination method. Acetate-dependent Fe(III) reduction was significantly inhibited in both growing cultures and cell suspensions of the mutant. When ppcA was expressed in trans, the full capacity for Fe(III) reduction with acetate was restored. The transfer of electrons from acetate to anthraquinone 2,6-disulphonate (AQDS; a humic acid analogue) and to U(VI) was also compromised in the mutant, but acetate-dependent reduction of fumarate was not altered. The rates of reduction of Fe(III), AQDS, U(VI) and fumarate were also the same in the wild type and ppcA mutant when hydrogen was supplied as the electron donor. When taken together with previous studies on other electron transport proteins in G. sulfurreducens, these results suggest that PpcA serves as an intermediary electron carrier from acetate to terminal Fe(III) reductases in the outer membrane, and is also involved in the transfer of electrons from acetate to U(VI) and humics.

Journal ArticleDOI
TL;DR: Analysis of protein kinase structures indicates that the sites used for docking substrates can also bind N- and C-terminal extensions to the kinase catalytic core and participate in the regulation of its activity.
Abstract: Signal transduction pathways use protein kinases for the modification of protein function by phosphorylation. A major question in the field is how protein kinases achieve the specificity required to regulate multiple cellular functions. Here we review recent studies that illuminate the mechanisms used by three families of Ser/Thr protein kinases to achieve substrate specificity. These kinases rely on direct docking interactions with substrates, using sites distinct from the phospho-acceptor sequences. Docking interactions also contribute to the specificity and regulation of protein kinase activities. Mitogen-activated protein kinase (MAPK) family members can associate with and phosphorylate specific substrates by virtue of minor variations in their docking sequences. Interestingly, the same MAPK docking pocket that binds substrates also binds docking sequences of positive and negative MAPK regulators. In the case of glycogen synthase kinase 3 (GSK3), the presence of a phosphate-binding site allows docking of previously phosphorylated (primed) substrates; this docking site is also required for the mechanism of GSK3 inhibition by phosphorylation. In contrast, non-primed substrates interact with a different region of GSK3. Phosphoinositide-dependent protein kinase-1 (PDK1) contains a hydrophobic pocket that interacts with a hydrophobic motif present in all known substrates, enabling their efficient phosphorylation. Binding of the substrate hydrophobic motifs to the pocket in the kinase domain activates PDK1 and other members of the AGC family of protein kinases. Finally, the analysis of protein kinase structures indicates that the sites used for docking substrates can also bind N- and C-terminal extensions to the kinase catalytic core and participate in the regulation of its activity.

Journal ArticleDOI
TL;DR: New findings are discussed which suggest that AMPK may play roles in regulating insulin release and the survival of pancreatic islet beta-cells, and nutrient sensing by the brain.
Abstract: AMPK (5'-AMP-activated protein kinase) is emerging as a metabolic master switch, by which cells in both mammals and lower organisms sense and decode changes in energy status. Changes in AMPK activity have been shown to regulate glucose transport in muscle and glucose production by the liver. Moreover, AMPK appears to be a key regulator of at least one transcription factor linked to a monogenic form of diabetes mellitus. As a result, considerable efforts are now under way to explore the usefulness of AMPK as a therapeutic target for other forms of this disease. Here we review this topic, and discuss new findings which suggest that AMPK may play roles in regulating insulin release and the survival of pancreatic islet beta-cells, and nutrient sensing by the brain.

Journal ArticleDOI
TL;DR: It is shown that inhibition of protein synthesis by any of several protein synthesis inhibitors tested allows insulin to regulate 4E-BP1 or S6K1 in amino-acid-deprived cells, as does the addition of amino acids to the medium.
Abstract: In mammalian cells, amino acids affect the phosphorylation state and function of several proteins involved in mRNA translation that are regulated via the rapamycin-sensitive mTOR (mammalian target of rapamycin) pathway. These include ribosomal protein S6 kinase, S6K1, and eukaryotic initiation factor 4E-binding protein, 4E-BP1. Amino acids, especially branched-chain amino acids, such as leucine, promote phosphorylation of 4E-BP1 and S6K1, and permit insulin to further increase their phosphorylation. However, it is not clear whether these effects are exerted by extracellular or intracellular amino acids. Inhibition of protein synthesis is expected to increase the intracellular level of amino acids, whereas inhibiting proteolysis has the opposite effect. We show in the present study that inhibition of protein synthesis by any of several protein synthesis inhibitors tested allows insulin to regulate 4E-BP1 or S6K1 in amino-acid-deprived cells, as does the addition of amino acids to the medium. In particular, insulin activates S6K1 and promotes initiation factor complex assembly in amino-acid-deprived cells treated with protein synthesis inhibitors, but cannot do so in the absence of these compounds. Their effects occur at concentrations commensurate with their inhibition of protein synthesis and are not due to activation of stress-activated kinase cascades. Inhibition of protein breakdown (autophagy) impairs the ability of insulin to regulate 4E-BP1 or S6K1 under such conditions. These and other data presented in the current study are consistent with the idea that it is intracellular amino acid levels that regulate mTOR signalling.

Journal ArticleDOI
TL;DR: Protein S-thiolation appears to serve an adaptive function during exposure to an oxidative stress by reprogramming metabolism and protecting protein synthesis against irreversible oxidation, and is proposed to result in glucose equivalents entering the pentose phosphate pathway for the generation of NADPH.
Abstract: The irreversible oxidation of cysteine residues can be prevented by protein S-thiolation, a process by which protein SH groups form mixed disulphides with low-molecular-mass thiols such as glutathione. We report here the target proteins which are modified in yeast cells in response to H2O2 .I n particular, a range of glycolytic and related enzymes (Tdh3, Eno2, Adh1, Tpi1, Ald6 and Fba1), as well as translation factors (Tef2, Tef5, Nip1 and Rps5) are identified. The oxidative stress conditions used to induce S-thiolation are shown to inhibit GAPDH (glyceraldehyde3-phosphate dehydrogenase), enolase and alcohol dehydrogenase activities, whereas they have no effect on aldolase, triose phosphate isomerase or aldehyde dehydrogenase activities. The inhibition of GAPDH, enolase and alcohol dehydrogenase is readily reversible once the oxidant is removed. In addition, we show that peroxide stress has little or no effect on glucose-6-phosphate dehydrogenaseor6-phosphogluconatedehydrogenase,theenzymes that catalyse NADPH production via the pentose phosphate pathway. Thus the inhibition of glycolytic flux is proposed to result in glucose equivalents entering the pentose phosphate pathway for the generation of NADPH. Radiolabelling is used to confirm that peroxide stress results in a rapid and reversible inhibition of protein synthesis. Furthermore, we show that glycolytic enzyme activities and protein synthesis are irreversibly inhibited in a mutant that lacks glutathione, and hence cannot modify proteins by S-thiolation. In summary, protein S-thiolation appears to serve an adaptive function during exposure to an oxidative stress by reprogramming metabolism and protecting protein synthesis against irreversible oxidation.

Journal ArticleDOI
TL;DR: The results suggest that FKHR has an important role in the regulation of energy metabolism, at least in part, through the up-regulation of PDK4 gene expression in skeletal muscle during starvation.
Abstract: A forkhead-type transcription factor, DAF-16, is located in the most downstream part of the insulin signalling pathway via PI3K (phosphoinositide 3-kinase). It is essential for the extension of life-span and is also involved in dauer formation induced by food deprivation in Caenorhabditis elegans. In the present study, we addressed whether or not FOXO members AFX, FKHR (forkhead homologue in rhabdomyosarcoma) and FKHRL1 (FKHR-like protein 1), mammalian counterparts of DAF-16, are involved in starvation stress. We found a remarkable selective induction of FKHR and FKHRL1 transcripts in skeletal muscle of mice during starvation. The induction of FKHR gene expression was observed at 6 h after food deprivation, peaked at 12 h, and returned to the basal level by 24 h of refeeding. The induction was also found in skeletal muscle of mice with glucocorticoid treatment. Moreover, we found that the levels of PDK4 (pyruvate dehydrogenase kinase 4) gene expression were up-regulated through the direct binding of FKHR to the promoter region of the gene in C2C12 cells. These results suggest that FKHR has an important role in the regulation of energy metabolism, at least in part, through the up-regulation of PDK4 gene expression in skeletal muscle during starvation.

Journal ArticleDOI
TL;DR: A physiological role for MRP1 and MRP4 in DHEAS transport and an involvement of MRp4 in transport of conjugated steroids and bile acids are suggested.
Abstract: Human multidrug-resistance protein (MRP) 4 transports cyclic nucleotides and when overproduced in mammalian cells mediates resistance to some nucleoside analogues. Recently, it has been shown that Mrp4 is induced in the livers of Fxr ((-/-)) mice, which have increased levels of serum bile acids. Since MRP4, like MRP1-3, also mediates transport of a model steroid conjugate substrate, oestradiol 17-beta-D-glucuronide (E(2)17betaG), we tested whether MRP4 may be involved in the transport of steroid and bile acid conjugates. Bile salts, especially sulphated derivatives, and cholestatic oestrogens inhibited the MRP4-mediated transport of E(2)17betaG. Inhibition by oestradiol 3,17-disulphate and taurolithocholate 3-sulphate was competitive, suggesting that these compounds are MRP4 substrates. Furthermore, we found that MRP4 transports dehydroepiandrosterone 3-sulphate (DHEAS), the most abundant circulating steroid in humans, which is made in the adrenal gland. The ATP-dependent transport of DHEAS by MRP4 showed saturable kinetics with K (m) and V (max) values of 2 microM and 45 pmol/mg per min, respectively (at 27 degrees C). We further studied the possible involvement of other members of the MRP family of transporters in the transport of DHEAS. We found that MRP1 transports DHEAS in a glutathione-dependent manner and exhibits K (m) and V (max) values of 5 microM and 73 pmol/mg per min, respectively (at 27 degrees C). No transport of DHEAS was observed in membrane vesicles containing MRP2 or MRP3. Our findings suggest a physiological role for MRP1 and MRP4 in DHEAS transport and an involvement of MRP4 in transport of conjugated steroids and bile acids.

Journal ArticleDOI
TL;DR: A review of advances that have been made in understanding the structure and function of drug efflux pumps and how conformational changes in these proteins are coupled to substrate translocation is reported.
Abstract: Resistance to therapeutic drugs encompasses a diverse range of biological systems, which all have a human impact. From the relative simplicity of bacterial cells, fungi and protozoa to the complexity of human cancer cells, resistance has become problematic. Stated in its simplest terms, drug resistance decreases the chance of providing successful treatment against a plethora of diseases. Worryingly, it is a problem that is increasing, and consequently there is a pressing need to develop new and effective classes of drugs. This has provided a powerful stimulus in promoting research on drug resistance and, ultimately, it is hoped that this research will provide novel approaches that will allow the deliberate circumvention of well understood resistance mechanisms. A major mechanism of resistance in both microbes and cancer cells is the membrane protein-catalysed extrusion of drugs from the cell. Resistant cells exploit proton-driven antiporters and/or ATP-driven ABC (ATP-binding cassette) transporters to extrude cytotoxic drugs that usually enter the cell by passive diffusion. Although some of these drug efflux pumps transport specific substrates, many are transporters of multiple substrates. These multidrug pumps can often transport a variety of structurally unrelated hydrophobic compounds, ranging from dyes to lipids. If we are to nullify the effects of efflux-mediated drug resistance, we must first of all understand how these efflux pumps can accommodate a diverse range of compounds and, secondly, how conformational changes in these proteins are coupled to substrate translocation. These are key questions that must be addressed. In this review we report on the advances that have been made in understanding the structure and function of drug efflux pumps.

Journal ArticleDOI
TL;DR: This review focuses on the involvement of PTKs and PTPases in positive and negative regulation of T-cell activation, the emerging theme of reciprocal regulation of each type of enzyme by the other, as well as regulation of phosphotyrosine turnover by Ser/Thr phosphorylation and regulation of localization of signal components.
Abstract: The sequence of events in T-cell antigen receptor (TCR) signalling leading to T-cell activation involves regulation of a number of protein tyrosine kinases (PTKs) and the phosphorylation status of many of their substrates. Proximal signalling pathways involve PTKs of the Src, Syk, Csk and Tec families, adapter proteins and effector enzymes in a highly organized tyrosine-phosphorylation cascade. In intact cells, tyrosine phosphorylation is rapidly reversible and generally of a very low stoichiometry even under induced conditions due to the fact that the enzymes removing phosphate from tyrosine-phosphorylated substrates, the protein tyrosine phosphatases (PTPases), have a capacity that is several orders of magnitude higher than that of the PTKs. It follows that a relatively minor change in the PTK/PTPase balance can have a major impact on net tyrosine phosphorylation and thereby on activation and proliferation of T-cells. This review focuses on the involvement of PTKs and PTPases in positive and negative regulation of T-cell activation, the emerging theme of reciprocal regulation of each type of enzyme by the other, as well as regulation of phosphotyrosine turnover by Ser/Thr phosphorylation and regulation of localization of signal components.

Journal ArticleDOI
TL;DR: The Wnt/beta-catenin signalling pathway appears to operate to maintain the undifferentiated state of preadipocytes by inhibiting adipogenic gene expression.
Abstract: The Wnt/beta-catenin signalling pathway appears to operate to maintain the undifferentiated state of preadipocytes by inhibiting adipogenic gene expression To define the mechanisms regulating suppression of Wnt/beta-catenin signalling, we analysed the beta-catenin expression in response to activation of transcription factors that regulate adipogenesis The results show an extensive down-regulation of nuclear beta-catenin that occurs during the first few days of differentiation of 3T3-L1 preadipocytes and coincides with the induction of the adipogenic transcription factors, C/EBPbeta (CCAAT-enhancer-binding protein) and PPARgamma (peroxisome-proliferator-activated receptor) To assess the role of each of these factors in this process, we conditionally overexpressed C/EBPbeta in Swiss mouse fibroblasts using the TET-off system Abundant expression of C/EBPbeta alone had minimal effect on beta-catenin expression, whereas expression of C/EBPbeta, in the presence of dexamethasone, induced PPARgamma expression and caused a measurable decrease in beta-catenin In addition, exposure of cells expressing both C/EBPbeta and PPARgamma to a potent PPARgamma ligand resulted in an even greater decrease in beta-catenin by mechanisms that involve the proteasome Our studies also suggest a reciprocal relationship between PPARgamma activity and beta-catenin expression, since ectopic production of Wnt-1 in preadipocytes blocked the induction of PPARgamma gene expression Moreover, by suppressing beta-catenin expression, ectopic expression of PPARgamma in Wnt-1-expressing preadipocytes rescued the block in adipogenesis after their exposure to the PPARgamma ligand, troglitazone

Journal ArticleDOI
TL;DR: Results indicate that inhibition of AMPK by glucose is essential for the activation of insulin secretion by the sugar, and may contribute to the transcriptional stimulation of the preproinsulin gene.
Abstract: AMP-activated protein kinase (AMPK) has recently been implicated in the control of preproinsulin gene expression in pancreatic islet beta-cells [da Silva Xavier, Leclerc, Salt, Doiron, Hardie, Kahn and Rutter (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 4023-4028]. Using pharmacological and molecular strategies to regulate AMPK activity in rat islets and clonal MIN6 beta-cells, we show here that the effects of AMPK are exerted largely upstream of insulin release. Thus forced increases in AMPK activity achieved pharmacologically with 5-amino-4-imidazolecarboxamide riboside (AICAR), or by adenoviral overexpression of a truncated, constitutively active form of the enzyme (AMPK alpha 1.T(172)D), blocked glucose-stimulated insulin secretion. In MIN6 cells, activation of AMPK suppressed glucose metabolism, as assessed by changes in total, cytosolic or mitochondrial [ATP] and NAD(P)H, and reduced increases in intracellular [Ca(2+)] caused by either glucose or tolbutamide. By contrast, inactivation of AMPK by expression of a dominant-negative form of the enzyme mutated in the catalytic site (AMPK alpha 1.D(157)A) did not affect glucose-stimulated increases in [ATP], NAD(P)H or intracellular [Ca(2+)], but led to the unregulated release of insulin. These results indicate that inhibition of AMPK by glucose is essential for the activation of insulin secretion by the sugar, and may contribute to the transcriptional stimulation of the preproinsulin gene. Modulation of AMPK activity in the beta-cell may thus represent a novel therapeutic strategy for the treatment of type 2 diabetes mellitus.