scispace - formally typeset
Journal ArticleDOI

Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals

TLDR
An unprecedented ZT of 2.6 ± 0.3 at 923 K is reported in SnSe single crystals measured along the b axis of the room-temperature orthorhombic unit cell, which highlights alternative strategies to nanostructuring for achieving high thermoelectric performance.
Abstract
The thermoelectric effect enables direct and reversible conversion between thermal and electrical energy, and provides a viable route for power generation from waste heat The efficiency of thermoelectric materials is dictated by the dimensionless figure of merit, ZT (where Z is the figure of merit and T is absolute temperature), which governs the Carnot efficiency for heat conversion Enhancements above the generally high threshold value of 25 have important implications for commercial deployment, especially for compounds free of Pb and Te Here we report an unprecedented ZT of 26 ± 03 at 923 K, realized in SnSe single crystals measured along the b axis of the room-temperature orthorhombic unit cell This material also shows a high ZT of 23 ± 03 along the c axis but a significantly reduced ZT of 08 ± 02 along the a axis We attribute the remarkably high ZT along the b axis to the intrinsically ultralow lattice thermal conductivity in SnSe The layered structure of SnSe derives from a distorted rock-salt structure, and features anomalously high Gruneisen parameters, which reflect the anharmonic and anisotropic bonding We attribute the exceptionally low lattice thermal conductivity (023 ± 003 W m(-1) K(-1) at 973 K) in SnSe to the anharmonicity These findings highlight alternative strategies to nanostructuring for achieving high thermoelectric performance

read more

Citations
More filters
Journal ArticleDOI

Cu8GeSe6-based thermoelectric materials with an argyrodite structure

TL;DR: In this article, the authors report that Cu8GeSe6 with an argyrodite structure is a new class of thermoelectric materials with extremely low lattice thermal conductivity.
Journal ArticleDOI

Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach

Abstract: It is challenging to characterize thermal conductivity of materials with strong anisotropy. In this work, we extend the time-domain thermoreflectance (TDTR) method with a variable spot size approach to simultaneously measure the in-plane (Kr) and the through-plane (Kz) thermal conductivity of materials with strong anisotropy. We first determine Kz from the measurement using a larger spot size, when the heat flow is mainly one-dimensional along the through-plane direction, and the measured signals are sensitive to only Kz. We then extract the in-plane thermal conductivity Kr from a second measurement using the same modulation frequency but with a smaller spot size, when the heat flow becomes three-dimensional, and the signal is sensitive to both Kr and Kz. By choosing the same modulation frequency for the two sets of measurements, we can avoid potential artifacts introduced by the frequency-dependent Kz, which we have found to be non-negligible, especially for some two-dimensional layered materials like MoS2. After careful evaluation of the sensitivity of a series of hypothetical samples, we provided a guideline on choosing the most appropriate laser spot size and modulation frequency that yield the smallest uncertainty, and established a criterion for the range of thermal conductivities that can be measured reliably using our proposed variable spot size TDTR approach. We have demonstrated this variable spot size TDTR approach on samples with a wide range of in-plane thermal conductivity, including fused silica, rutile titania (TiO2 [001]), zinc oxide (ZnO [0001]), molybdenum disulfide (MoS2), hexagonal boron nitride (h-BN), and highly ordered pyrolytic graphite (HOPG).
Journal ArticleDOI

Recent progress on PEDOT:PSS based polymer blends and composites for flexible electronics and thermoelectric devices

TL;DR: In this article, a review of PEDOT:PSS-based blends and composites used in the above two applications fields is presented, where the main focus is on the electrical conductivity, stretchability and thermoelectric properties of these blends.
Journal ArticleDOI

Evaluating broader impacts of nanoscale thermal transport research

TL;DR: In this article, the authors provide an evaluation of the existing and potential impacts of the basic research efforts in this field on the developments of the heat transfer discipline, workforce, and a number of technologies, including heat-assisted magnetic recording, phase change memories, thermal management of microelectronics, thermoelectric energy conversion, thermal energy storage, building and vehicle heating and cooling, manufacturing, and biomedical devices.
Journal ArticleDOI

The advent of graphene and other two-dimensional materials in membrane science and technology

TL;DR: In this article, the potential of two-dimensional materials beyond graphene in membrane science is discussed, emphasizing peculiarities, application fields, open challenges and pitfalls, as well as promising candidates to work as ultrathin membranes beyond graphene.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Journal ArticleDOI

Special points for brillouin-zone integrations

TL;DR: In this article, a method for generating sets of special points in the Brillouin zone which provides an efficient means of integrating periodic functions of the wave vector is given, where the integration can be over the entire zone or over specified portions thereof.
Journal ArticleDOI

Complex thermoelectric materials.

TL;DR: A new era of complex thermoelectric materials is approaching because of modern synthesis and characterization techniques, particularly for nanoscale materials, and the strategies used to improve the thermopower and reduce the thermal conductivity are reviewed.
Journal ArticleDOI

High-performance bulk thermoelectrics with all-scale hierarchical architectures

TL;DR: It is shown that heat-carrying phonons with long mean free paths can be scattered by controlling and fine-tuning the mesoscale architecture of nanostructured thermoelectric materials, and an increase in ZT beyond the threshold of 2 highlights the role of, and need for, multiscale hierarchical architecture in controlling phonon scattering in bulk thermoeLECTrics.
Related Papers (5)