scispace - formally typeset
Search or ask a question

Showing papers on "Chromosome published in 1996"


Journal ArticleDOI
TL;DR: Telomere fluorescence intensity values from metaphase chromosomes of cultured human hematopoietic cells decreased with the replication history of the cells, varied up to six-fold within a metaphase, and were similar between sister chromatid telomeres.
Abstract: Vertebrate chromosomes terminate in variable numbers of T2AG3 nucleotide repeats. In order to study telomere repeats at individual chromosomes, we developed novel, quantitative fluorescence in situ hybridization procedures using labeled (C3TA2)3 peptide nucleic acid and digital imaging microscopy. Telomere fluorescence intensity values from metaphase chromosomes of cultured human hematopoietic cells decreased with the replication history of the cells, varied up to six-fold within a metaphase, and were similar between sister chromatid telomeres. Surprisingly, telomere fluorescence intensity values within normal adult bone marrow metaphases did not show a normal distribution, suggesting that a minimum number of repeats at each telomere is required and/or maintained during normal hematopoiesis.

857 citations


Journal ArticleDOI
TL;DR: The present review summarizes the available data on wheat-alien transfers conferring resistance to diseases and pests and should be useful for further directed chromosome engineering aimed at producing superior germplasm.
Abstract: Wild relatives of common wheat, Triticum aestivum, and related species are an important source of disease and pest resistance and several useful traits have been transferred from these species to wheat. C-banding and in situ hybridization analyses are powerful cytological techniques allowing the detection of alien chromatin in wheat. C-banding permits identification of the wheat and alien chromosomes involved in wheat-alien translocations, whereas genomic in situ hybridization analysis allows determination of their size and breakpoint positions. The present review summarizes the available data on wheat-alien transfers conferring resistance to diseases and pests. Ten of the 57 spontaneous and induced wheat-alien translocations were identified as whole arm translocations with the breakpoints within the centromeric regions. The majority of transfers (45) were identified as terminal translocations with distal alien segments translocated to wheat chromosome arms. Only two intercalary wheat-alien transloctions were identified, one induced by radiation treatment with a small segment of rye chromosome 6RL (H25) inserted into the long arm of wheat chromosome 4A, and the other probably induced by homoeologous recombination with a segment derived from the long arm of a group 7 Agropyron elongatum chromosome with Lr19 inserted into the long arm of 7D. The presented information should be useful for further directed chromosome engineering aimed at producing superior germplasm.

841 citations


Journal ArticleDOI
TL;DR: A new method for in situ localization of DNA sequences that allows excellent preservation of nuclear and chromosomal ultrastructure and direct, in vivo observations is reported.
Abstract: We report a new method for in situ localization of DNA sequences that allows excellent preservation of nuclear and chromosomal ultrastructure and direct, in vivo observations. 256 direct repeats of the lac operator were added to vector constructs used for transfection and served as a tag for labeling by lac repressor. This system was first characterized by visualization of chromosome homogeneously staining regions (HSRs) produced by gene amplification using a dihydrofolate reductase (DHFR) expression vector with methotrexate selection. Using electron microscopy, most HSRs showed approximately 100-nm fibers, as described previously for the bulk, large-scale chromatin organization in these cells, and by light microscopy, distinct, large-scale chromatin fibers could be traced in vivo up to 5 microns in length. Subsequent experiments demonstrated the potential for more general applications of this labeling technology. Single and multiple copies of the integrated vector could be detected in living CHO cells before gene amplification, and detection of a single 256 lac operator repeat and its stability during mitosis was demonstrated by its targeted insertion into budding yeast cells by homologous recombination. In both CHO cells and yeast, use of the green fluorescent protein-lac repressor protein allowed extended, in vivo observations of the operator-tagged chromosomal DNA. Future applications of this technology should facilitate structural, functional, and genetic analysis of chromatin organization, chromosome dynamics, and nuclear architecture.

729 citations


Journal ArticleDOI
TL;DR: The location of the V EGF gene in the 6p21.3 region is a potential starting point for a linkage study and the isolation of YAC clones containing the VEGF gene will contribute to the construction of the physical map of this chromosomal region.
Abstract: Background Vascular endothelial growth factor (VEGF) is an endothelial cell–specific growth factor and a regulator of physiological and pathological angiogenesis. Four different proteins are produced by alternative splicing of a unique transcript generated from a single-copy gene. Knowledge of the chromosomal location of the VEGF gene would help in determining a linkage to any known human congenital syndrome and/or to known chromosomal rearrangements in tumors. Methods and Results A human chromosome mapping panel was used to assign the VEGF gene to human chromosomes by polymerase chain reaction using VEGF-specific oligonucleotide primers. Amplified DNA fragments were fractionated on a 1% agarose gel. A single band of the expected size was obtained only from the DNA of those hybrid cell lines that contained the human chromosome 6. Three YAC clones containing the VEGF gene were obtained by screening the ICI Diagnostics library. In situ hybridization was then used to locate the VEGF gene in the 6p21.3 region...

474 citations


Journal ArticleDOI
01 Sep 1996-Genomics
TL;DR: It is demonstrated that bidirectional heterologous chromosome painting is a highly efficient way of generating comparative cytogenetic maps.

441 citations


Journal ArticleDOI
TL;DR: In this article, the chromosomes contributed by these two species in an interspecific F1 hybrid and a cultivated clone, R570, were identified using comparative genomic DNA in situ hybridization.
Abstract: Cultivated sugarcane clones (Saccharum spp., 2n=100 to 130) are derived from complex interspecific hybridizations between the speciesS. officinarum andS. spontaneum. Using comparative genomic DNA in situ hybridization, we demonstrated that it is possible to distinguish the chromosomes contributed by these two species in an interspecific F1 hybrid and a cultivated clone, R570. In the interspecific F1 studied, we observed n+n transmission of the parental chromosomes instead of the peculiar 2n+n transmission usually described in such crosses. Among the chromosomes of cultivar R570 (2n=107–115) about 10% were identified as originating fromS. spontaneum and about 10% were identified as recombinant chromosomes between the two speciesS. officinarum andS. spontaneum. This demonstrated for the first time the occurrence of recombination between the chromosomes of these two species. The rDNA sites were located by in situ hybridization in these two species and the cultivar R570. This supported different basic chromosome numbers and chromosome structural differences between the two species and provided a first bridge between physical and genetical mapping in sugarcane.

430 citations


Journal ArticleDOI
01 Dec 1996-Genetics
TL;DR: The cytogenetic ladder map (CLM) involving the Triticeae consensus genetic map revealed that the distribution of genes and recombination in wheat (Triticum aestivum) group 1 chromosomes is the same in other TritICEae species.
Abstract: We studied the distribution of genes and recombination in wheat (Triticum aestivum) group 1 chromosomes by comparing high-density physical and genetic maps. Physical maps of chromosomes 1A, 1B, and 1D were generated by mapping 50 DNA markers on 56 single-break deletion lines. A consensus physical map was compared with the 1D genetic map of Triticum tauschii (68 markers) and a Triticeae group 1 consensus map (288 markers) to generate a cytogenetic ladder map (CLM). Most group 1 markers (86%) were present in five clusters that encompassed only 10% of the group 1 chromosome. This distribution may reflect that of genes because more than half of the probes were cDNA clones and 30% were PstI genomic. All 14 agronomically important genes in group 1 chromosomes were present in these clusters. Most recombination occurred in gene-cluster regions. Markers fell at an average distance of 244 kb in these regions. The CLM involving the Triticeae consensus genetic map revealed that the above distribution of genes and recombination is the same in other Triticeae species. Because of a significant number of common markers, our CLM can be used for comparative mapping and to estimate physical distances among markers in many Poaceae species including rice and maize.

427 citations


Journal ArticleDOI
TL;DR: It is observed that crude aneuploidy and increased proliferative activity are early events in colorectal carcinogenesis, followed by TP53 overexpression and the acquisition of recurrent chromosomal gains and losses during the progression from high‐grade adenomas to invasive carcinomas.
Abstract: Comparative genomic hybridization was used to screen the DNA extracted from histologically defined tissue sections from consecutive stages of colorectal carcinogenesis for chromosomal aberrations. No aberrations were detected in normal epithelium (n = 14). Gain of chromosome 7 occurred as a single event in low-grade adenomas (n = 14). In high-grade adenomas (n = 12), and overrepresentation of chromosomes 7 and 20 was present in 30% of the cases analyzed. The transition to colon carcinomas (n = 16) was characterized by the emergence of multiple chromosomal aberrations. Chromosomes 1, 13, and 20 and chromosome arms 7p and 8q were frequently gained, whereas chromosome 4 and chromosome arms 8p and 18q were recurrently underrepresented. The same tissue sections that were used for CGH were analyzed by means of DNA-ploidy measurements and immunohistochemical staining to quantify proliferative activity and p21/WAF-1 and TP53 expression. We observed that crude aneuploidy and increased proliferative activity are early events in colorectal carcinogenesis, followed by TP53 overexpression and the acquisition of recurrent chromosomal gains and losses during the progression from high-grade adenomas to invasive carcinomas.

395 citations


Journal ArticleDOI
TL;DR: A panel of 27 pig x rodent somatic cell hybrids was produced and characterized cytogenetically to establish not only assignments of genes and markers but also regional localizations on pig chromosomes and to detect rearranged ones.
Abstract: A panel of 27 pig x rodent somatic cell hybrids was produced and characterized cytogenetically. The first step of this study consisted of hybridizing a SINE probe to GTG-banded metaphases of each hybrid clone in order to count and identify the normal pig chromosomes and to detect rearranged ones. The second step consisted of using the DNA of each clone as a probe after pIRS-PCR (porcine interspersed repetitive sequence-polymerase chain reaction) amplification to highly enrich it in pig sequences. These probes, hybridized to normal pig metaphase chromosomes, enabled the identification of the complete porcine complement in the hybrid lines. Whole chromosomes and fragments were characterized quickly and precisely, and results were compared. In addition to this cytogenetic characterization, molecular verification was also carried out by using primers specific to six microsatellites and to one gene previously mapped to pig chromosomes. The results obtained allow us to conclude that we have produced a panel that is informative for all porcine chromosomes. This panel constitutes a highly efficient tool to establish not only assignments of genes and markers but also regional localizations on pig chromosomes.

299 citations


Journal Article
TL;DR: It is suggested that in at least a proportion of patients with head and neck cancers, multiple primary tumors arise from a single clone.
Abstract: Patients with head and neck cancers have a high (2-3%/year) incidence of second primary lesions. Clinically, these new lesions are identified either simultaneously with the primary lesion (synchronous) or after a period of time (metachronous). This observation has been attributed to the concept of "field carcinogenesis," which is based on the hypothesis that prolonged exposure to carcinogens leads to the independent transformation of multiple epithelial cells at several sites. An alternative theory is based on the premise that any transforming event is rare; following initial transformation, the progeny of the transformed clone spread through the mucosa and give rise to geographically distinct but genetically related tumors. We analyzed the pattern of X-chromosome inactivation in multiple primary tumors from eight female patients with head and neck cancer. In addition, we used microsatellite analysis to examine the pattern of allelic loss on chromosomes 9p and 3p, identified as early events in the progression of head and neck malignancies. In four of four cases, multiple tumors demonstrated the same pattern of X-chromosome inactivation. In the remaining four cases, X-chromosome deletions prevented interpretation (n = 3), or the androgen receptor locus was noninformative (n = 1). In three of nine patients, multiple tumors displayed the same pattern of loss of heterozygosity, two with identical breakpoints on chromosome 9p. In one patient, there was an identical microsatellite alteration at a 3p locus, definitive evidence that these tumors arose from the same clone. Our findings suggest that in at least a proportion of patients with head and neck cancers, multiple primary tumors arise from a single clone.

294 citations


Journal ArticleDOI
01 Jun 1996-Genetics
TL;DR: A genetic map of diploid wheat, Triticum monococcum L., involving 335 markers, including RFLP DNA markers, isozymes, seed storage proteins, rRNA, and morphological loci, is reported.
Abstract: A genetic map of diploid wheat, Triticum monococcum L., involving 335 markers, including RFLP DNA markers, isozymes, seed storage proteins, rRNA, and morphological loci, is reported. T. monococcum and barley linkage groups are remarkably conserved. They differ by a reciprocal translocation involving the long arms of chromosomes 4 and 5, and paracentric inversions in the long arm of chromosomes 1 and 4; the latter is in a segment of chromosome arm 4L translocated to 5L in T. monococcum. The order of the markers in the inverted segments in the T. monococcum genome is the same as in the B and D genomes of T. aestivum L. The T. monococcum map differs from the barley maps in the distribution of recombination within chromosomes. The major 5S rRNA loci were mapped on the short arms of T. monococcum chromosomes 1 and 5 and the long arms of barley chromosomes 2 and 3. Since these chromosome arms are colinear, the major 5S rRNA loci must be subjected to positional changes in the evolving Triticeae genome that do not perturb chromosome colinearity. The positional changes of the major 5S rRNA loci in Triticeae genomes are analogous to those of the 18S-5.8S-26S rRNA loci.

Journal ArticleDOI
TL;DR: Near-trip-loidy of neuroblastoma cells and intact chromosome 1 are presumably genetic prerequisites for spontaneous organoid maturation, because the authors found no diploidy or chromosome 1 depletions in the neuronal cells of spontaneously maturing neuroblastomas.
Abstract: BackgroundNeuroblastoma is a heterogeneous disease, with manifestations ranging from spontaneous regression to lethal spread. Sometimes the tumor spontaneously differentiates toward a benign ganglioneuroma (maturing neuroblastoma). The prognosis is frequently related to ploidy, deletions in the short arm of chromosome 1, and amplifications of the N-myc oncogene. Maturing neuroblastomas consist of both neuronal cells and Schwann cells. We investigated the genetic composition of both cell types in maturing neuroblastomas, to determine the relation between genetic abnormalities and maturation. MethodsWe studied 20 maturing and mature neuroblastomas by in situ hybridization to count the chromosomes and evaluate possible deletions in the short arm of chromosome 1 in neuronal and Schwann cells. The DNA content of the cells was measured by flow cytometry. ResultsNeuroblastic and ganglionic cells showed aberrations in the number of chromosomes. In situ hybridization and flow cytometry demonstrated near-triploidy ...

Journal ArticleDOI
TL;DR: QTL analysis of 222 F2 mice revealed four new loci that influence susceptibility to lung cancer (Sluc genes), indicating that interactions between tumour susceptibility genes are a common phenomenon which complicates their mapping.
Abstract: Many complex traits, including susceptibility to lung cancer, are controlled by multiple genes--quantitative trait loci (QTLs). We facilitated the mapping of QTLs by making use of recombinant congenic strains (RCS), a system of mouse inbred strains in which the genetic complexity is reduced, and by applying MQM-mapping (multiple-QTL models or marker-QTL-marker), a multilocus method with an increased power of detecting of individual QTLs and interacting QTLs (epistasis). The mouse strain O20 develops significantly larger N-ethyl-N-nitrosourea induced lung tumours than mice of the RC strain OcB-9 (ref. 5); the latter share approximately 87.5% of their genes with strain O20 and 12.5% with strain B10.O20 (refs 6,7). QTL analysis of 222 (OcB-9 x O20) F2 mice revealed four new loci that influence susceptibility to lung cancer (Sluc genes). They are involved in two significant, partly counteracting interactions which mask their individual main effects: Sluc1 (on chromosome 19) interacts with Sluc2 (chromosome 2), and Sluc3 (chromosome 6) interacts with Sluc4 (chromosome 11). Together with the data of van Wezel et al. in the accompanying report, our results indicate that interactions between tumour susceptibility genes are a common phenomenon which complicates their mapping.

Journal ArticleDOI
TL;DR: Ty5 target preference extends the link between telomere structure and reverse transcription as carried out by telomerase and Drosophila retrotransposons and is predicted to be attributable to interactions between transposition intermediates and constituents of silent chromatin assembled at these sites.
Abstract: The nonrandom integration of retrotransposons and retroviruses suggests that chromatin influences target choice. Targeted integration, in turn, likely affects genome organization. In Saccharomyces, native Ty5 retrotransposons are located near telomeres and the silent mating locus HMR. To determine whether this distribution is a consequence of targeted integration, we isolated a transposition-competent Ty5 element from S. paradoxus, a species closely related to S. cerevisiae. This Ty5 element was used to develop a transposition assay in S. cerevisiae to investigate target preference of de novo transposition events. Of 87 independent Ty5 insertions, approximately 30% were located on chromosome III, indicating this small chromosome (approximately 1/40 of the yeast genome) is a highly preferred target. Mapping of the exact location of 19 chromosome III insertions showed that 18 were within or adjacent to transcriptional silencers flanking HML and HMR or the type X subtelomeric repeat. We predict Ty5 target preference is attributable to interactions between transposition intermediates and constituents of silent chromatin assembled at these sites. Ty5 target preference extends the link between telomere structure and reverse transcription as carried out by telomerase and Drosophila retrotransposons.

Journal ArticleDOI
TL;DR: It is proposed that primary chromosome aberrations and secondary changes, considered to be important in tumor progression, may be distinguished in the tumors characterized by simple and disease‐specific abnormalities and are genetically and hence, most likely, functionally distinct.
Abstract: Two quite distinct neoplasia-associated karyotypic patterns are emerging. One is characterized by simple and disease-specific abnormalities, and the other is characterized by multiple and nonspecific aberrations. The former pattern is typical of most leukemias and lymphomas and of some mesenchymal tumors, but it is rare in epithelial neoplasms. The latter pattern is found in most epithelial tumor types, in several mesenchymal neoplasms, but in only a few hematologic malignancies. Primary chromosome aberrations, which are believed to be essential in establishing the neoplasm, and secondary changes, which are considered to be important in tumor progression, may be distinguished in the tumors characterized by simple and disease-specific abnormalities. Here, we propose that these aberrations are genetically and hence, most likely, functionally distinct. Primary abnormalities lead to specific gene rearrangements, whereas secondary chromosomal changes result in large-scale genomic imbalances. According to this hypothesis, there are no unbalanced primary aberrations, only secondary imbalances masquerading as primary. This proposition has a number of conceptual ramifications. First, the genetic mechanisms underlying tumor initiation and progression would seem to be totally different. Second, the elucidation of the molecular consequences of the secondary aberrations will be an arduous task, even if one were to adhere to the view that cytogenetically identified genomic imbalances may be reduced to simple gains or losses of single oncogenes or tumor suppressor genes. Third, the cytogenetic diagnosis of neoplasms will have to take into account that an unbalanced "primary" abnormality is secondary to a submicroscopic, truly primary change of major diagnostic and prognostic importance.

Journal Article
TL;DR: The undifferentiated tumors (G3) were characterized by additional deletions on chromosomes 4q, 8p, 11q, 13q, 18q, and 21q and overrepresentations on 1pter, 11Q13, 19, and 22q, suggesting that these changes are preferentially associated with tumor progression.
Abstract: Comparative genomic hybridization was performed on 30 primary head and neck squamous cell carcinomas. Fractional or entire DNA loss of chromosome 3p was a basic finding that occurred in 29 cases (97%). Additional DNA underrepresentations were observed in more than 50% of the cases on chromosomes 1p, 4, 5q, 6q, 8p, 9p, 11q, 13q, 18q, and 21q. Deletions on chromosomes 3p, 13q, and 17p were confirmed by loss of heterozygosity analysis. Entire or partial DNA copy number increases were identified for chromosome 3q in 26 cases (87%) with high-level amplifications at 3q24 and 3q27-qter. Overrepresentations were found in decreasing order of frequency at 11q13 (70%), 8q (57%), 19q (50%), 19p (47%), and 17q (47%). The use of comparative genomic hybridization superkaryograms of the group of well-differentiated carcinomas (G1) indicated that the deletions on chromosomes 3p and 9p along with the overrepresentation of 3q are associated with early tumor development. Accordingly, the undifferentiated tumors (G3) were characterized by additional deletions on chromosomes 4q, 8p, 11q, 13q, 18q, and 21q and overrepresentations on 1pter, 11q13, 19, and 22q, suggesting that these changes are preferentially associated with tumor progression.

Journal ArticleDOI
TL;DR: In this paper, the authors used pulsed-field gel electrophoresis to identify the order of the I-CeuI fragments of Salmonella typhi, the causal organism of typhoid fever.
Abstract: Gene order in the chromosomes of Escherichia coli K-12 and Salmonella typhimurium LT2, and in many other species of Salmonella, is strongly conserved, even though the genera diverged about 160 million years ago. However, partial digestion of chromosomal DNA of Salmonella typhi, the causal organism of typhoid fever, with the endonuclease I-CeuI followed by separation of the DNA fragments by pulsed-field gel electrophoresis showed that the chromosomes of independent wild-type isolates of S. typhi are rearranged due to homologous recombination between the seven rrn genes that code for ribosomal RNA. The order of genes within the I-CeuI fragments is largely conserved, but the order of the fragments on the chromosome is rearranged. Twenty-one different orders of the I-CeuI fragments were detected among the 127 wild-type strains we examined. Duplications and deletions were not found, but transpositions and inversions were common. Transpositions of I-CeuI fragments into sites that do not change their distance from the origin of replication (oriC) are frequently detected among the wild-type strains, but transpositions that move the fragments much further from oriC were rare. This supports the gene dosage hypothesis that genes at different distances from oriC have different gene dosages and, hence, different gene expression, and that during evolution genes become adapted to their specific location; thus, cells with changes in gene location due to transpositions may be less fit. Therefore, gene dosage may be one of the forces that conserves gene order, although its effects seem less strong in S. typhi than in other enteric bacteria. However, both the gene dosage and the genomic balance hypotheses, the latter of which states that the origin (oriC) and terminus (TER) of replication must be separated by 180 degrees C, need further investigation.

Journal ArticleDOI
TL;DR: The comparative painting results agreed completely with the limited gene mapping data available in horses, and also enabled us provisionally to assign one linkage group and one syntenic group (NP, MPI, IDH2) to specific equine chromosomes.
Abstract: Human chromosome specific libraries (CSLs) were individually applied to equine metaphase chromosomes using the fluorescencein situ hybridization (FISH) technique. All CSLs, except Y, showed painting signals on one or several horse chromosomes. In total 43 conserved chromosoma segments were painted. Homoeology could not, however, be detected for some segments of the equine genome. This is most likely related to the very weak signals displayed by some libraries, rather than to the absence of similarity with the human genome. In spite of divergence from the human genome, dated 70–80 million years ago, a fairly high degree of synteny conservation was observed. In seven cases, whole chromosome synteny was detected between the two species. The comparative painting results agreed completely with the limited gene mapping data available in horses, and also enabled us provisionally to assign one linkage group (U2) and one syntenic group (NP, MPI, IDH2) to specific equine chromosomes. Chromosomal assignments of three other syntenic groups are also proposed. The findings of this study will be of significant use in the expansion of the hitherto poorly developed equine gene map.

Journal ArticleDOI
TL;DR: All the physical linkage groups constituting the genome of Leishmania infantum have been identified for the first time by hybridization of specific DNA probes to pulsed field gradient-separated chromosomes, suggesting that conservation of the chromosome structure may be critical for this human pathogen.
Abstract: All the physical linkage groups constituting the genome of Leishmania infantum have been identified for the first time by hybridization of specific DNA probes to pulsed field gradient-separated chromosomes. The numerous co-migrating chromosomes were individualised using the distinctive size polymorphisms which occur among strains of the L. infantum/L. donovani complex as a tool. A total of 244 probes, consisting of 41 known genes, 66 expressed sequence tags (ESTs) and 137 anonymous DNA sequences, were assigned to a specific linkage group. We show that this genome comprises 36 chromosomes ranging in size from 0.35 to -3 Mb. This information enabled us to compare the genome structure of L. infantum with those of the three other main Leishmania species that infect man in the Old World, L. major, L. tropica and L. aethiopica. The linkage groups were consistently conserved in all species examined. This result is in striking contrast to the large genetic distances that separate these species and suggests that conservation of the chromosome structure may be critical for this human pathogen. Finally, the high density of markers obtained during the present study (with a mean of 1 marker/130 kb) will speed up the construction of a detailed physical map that would facilitate the genetic analysis of this parasite, for which no classical genetics is available.

Journal ArticleDOI
TL;DR: A single critical region of 2-3 Mb in size is identified in which 11q14-923 aberrations in LPD cluster are identified, providing the basis for the identification of the gene(s) at 11q22.3- 923.1 that are involved in the pathogenesis of LPD.
Abstract: Aberrations of the long arm of chromosome 11 are among the most common chromosome abnormalities in lymphoproliferative disorders (LPD). Translocations involving BCL1 at 11q13 are strongly associated with mantle cell lymphoma. other nonrandom aberrations, especially deletions and, less frequently, translocations, involving bands 11q21-923 have been identified by chromosome banding analysis. To date, the critical genomic segment and candidate genes involved in these deletions have not been identified. In the present study, we have analyzed tumors from 43 patients with LPD (B-cell chronic lymphocytic leukemia, n = 40; mantle cell lymphoma, n = 3) showing aberrations of bands 11q21-923 by fluorescence in situ hybridization. As probes we used Alu-PCR products from 17 yeast artificial chromosome clones spanning chromosome bands 11q14.3-923.3, including a panel of yeast artificial chromosome clones recognizing a contiguous genomic DNA fragment of approximately 9-10 Mb in bands 11q22.3-923.3. In the 41 tumors exhibiting deletions, we identified a commonly deleted segment in band 11q22.3-923.1; this region is approximately 2-3 Mb in size and contains the genes coding for ATM (ataxia telangiectasia mutated), RDX (radixin), and FDX1 (ferredoxin 1). Furthermore, two translocation break-points were localized to a 1.8-Mb genomic fragment contained within the commonly deleted segment. Thus, we have identified a single critical region of 2-3 Mb in size in which 11q14-923 aberrations in LPD cluster. This provides the basis for the identification of the gene(s) at 11q22.3-923.1 that are involved in the pathogenesis of LPD.

Journal ArticleDOI
TL;DR: Applying the differential analysis to screen DNA of 160 Dutch cases referred to us for FSHD1 diagnosis, evidence for subtelomeric exchange of 3.3 kb repeated units between chromosomes 4q35 and 10q26 in affected and unaffected individuals is obtained.
Abstract: Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant myopathy, clinically characterized by asymmetric weakness of muscles in the face, shoulder girdle and upper arm. Deletion of an integral number of 3.3 kb repeated units within a highly polymorphic EcoRI fragment at chromosome 4q35, generating a relatively short EcoRI fragment (< 35 kb), has been shown to cause FSHD1. Probe p13E-11 detects these short fragments in FSHD1 patients, and has therefore been used for diagnostic DNA analysis. However, the reliability of this analysis has been hampered by cross-hybridization of p13E-11 to chromosome 10q26-linked EcoRI fragments of comparable size, which also contain a variable number of 3.3 kb repeated units. Recently, a BinI restriction site was identified within each of the repeated units derived from chromosome 10q26, which enables differentiation of the two polymorphic p13E-11 loci in most cases without haplotype analysis. Remarkably, applying the differential analysis to screen DNA of 160 Dutch cases referred to us for FSHD1 diagnosis, we obtained evidence for subtelomeric exchange of 3.3 kb repeated units between chromosomes 4q35 and 10q26 in affected and unaffected individuals. Subsequently, analysis of 50 unrelated control samples indicated such exchange between chromosomes 4q35 and 10q26 in at least 20% of the population. These subtelomeric rearrangements have generated a novel interchromosomal polymorphism, which has implications for the specificity and sensitivity of the differential restriction analysis for diagnostic purposes. Moreover, the high frequency of the interchromosomal exchanges of 3.3 kb repeated units suggests that they probably do not contain (part of) the FSHD1 gene, and supports position effect variegation as the most likely mechanism for FSHD1.

Journal ArticleDOI
TL;DR: This constitutes the first report of the production of karyotypically stable partial hybrids involving highly unrelated species from two subfamilies of the Gramineae and the subsequent recovery of fertile oat-maize chromosome addition lines.
Abstract: In cereals, interspecific and intergeneric hybridizations (wide crosses) which yield karyotypically stable hybrid plants have been used as starting points to widen the genetic base of a crop and to construct stocks for genetic analysis. Also, uniparental genome elimination in karyotypically unstable hybrids has been utilized for cereal haploid production. We have crossed hexaploid oat (2n=6x=42, Avena sativa L.) and maize (2n=2x=20, Zea mays L.) and recovered 90 progenies through embryo rescue. Fifty-two plants (58%) produced from oatxmaize hybridization were oat haploids (2n=3x=21) following maize chromosome elimination. Twenty-eight plants (31%) were found to be stable partial hybrids with 1-4 maize chromosomes in addition to a haploid set of 21 oat chromosomes (2n=21+1 to 2n=21+4). Ten of the ninety plants produced were found to be apparent chromosomal chimeras, where some tissues in a given plant contained maize chromosomes while other tissues did not, or else different tissues contained a different number of maize chromosomes. DNA restriction fragment length polymorphisms (RFLPs) were used to identify the maize chromosome(s) present in the various oat-maize progenies. Maize chromosomes 2, 3, 4, 5, 6, 7, 8, and 9 were detected in partial hybrids and chromosomal chimeras. Maize chromosomes 1 and 10 were not detected in the plants analyzed to-date. Furthermore, partial self-fertility, which is common in oat haploids, was also observed in some oat-maize hybrids. Upon selfing, partial hybrids with one or two maize chromosomes showed nearly complete transmission of the maize chromosome to give self-fertile maize-chromosome-addition oat plants. Fertile lines were recovered that contained an added maize chromosome or chromosome pair representing six of the ten maize chromosomes. Four independently derived disomic maize chromosome addition lines contained chromosome 4, one line carried chromosome 7, two lines had chromosome 9, one had chromosome 2, and one had chromosome 3. One maize chromosome-8 monosomic addition line was also identified. We also identified a double disomic addition line containing both maize chromosomes 4 and 7. This constitutes the first report of the production of karyotypically stable partial hybrids involving highly unrelated species from two subfamilies of the Gramineae (Pooideae - oat, and Panicoideae - maize) and the subsequent recovery of fertile oat-maize chromosome addition lines. These represent novel material for gene/ marker mapping, maize chromosome manipulation, the study of maize gene expression in oat, and the transfer of maize DNA, genes, or active transposons to oat.

Journal ArticleDOI
TL;DR: Two unrelated families are described which independently suggest that the gene is imprinted, is paternally expressed and maps to 6q22-q23 in the aetiology of diabetes on chromosome 6.
Abstract: Transient neonatal diabetes mellitus (TNDM) is a rare form of childhood diabetes which usually resolves in the first 6 months of life but which predisposes to type 2 diabetes of adult onset. We recently reported paternal uniparental isodisomy of chromosome 6 (UPD6) in two children with TNDM and proposed that there may be an imprinted gene important in the aetiology of diabetes on chromosome 6. We now describe two unrelated families which independently suggest that the gene is imprinted, is paternally expressed and maps to 6q22-q23. One family has a duplication while the other, with familial TNDM, shows linkage to a marker in this region.

Journal ArticleDOI
TL;DR: Double FISH experiments demonstrated that the 5S rDNA which is not sex linked is located at the NOR bearing arm close to the major ribosomal RNA genes, similar to the situation observed in Atlantic salmon.
Abstract: The karyotype of the rainbow trout is characterized by a primitive XX/XY sex-determining chromosomal system. (Thorgaard et al., 1977). In the present study using FISH we have physically linked the 5S rRNA genes to the partially undifferentiated X chromosome pair. PCR amplified 5S rDNA was used for FISH and hybridization signals indicated that the genes were duplicated, present in one acrocentric and one metacentric pair of chromosomes. After analyzing several individuals, the female metaphases showed four fluorescent signals whereas males presented only three signals. Two of the three signals obtained in males corresponded to the metacentric pair whereas the single signal was mapped to the heterochromatin that cytologically differentiates the X chromosome from the Y chromosome. Double FISH experiments demonstrated that the 5S rDNA which is not sex linked is located at the NOR bearing arm close to the major ribosomal RNA genes (5.8S, 18S and 28S), similar to the situation observed in Atlantic salmon (Pendas et al., 1994a).

Journal ArticleDOI
TL;DR: The PS2 gene is required for some forms of cell death in diverse cell types, and its function is opposed by ALG-3, a truncated mouse homologue of the chromosome 1 familial Alzheimer's disease gene PS2.

Journal ArticleDOI
TL;DR: Observations that dCHD1 localizes to sites of extended chromatin (interbands) and regions associated with high transcriptional activity (puffs) on polytene chromosomes from salivary glands of third instar larvae strongly support the idea that CHD1 functions to alter chromatin structure in a way that facilitates gene expression.
Abstract: Previously, we reported on the discovery and characterization of a mammalian chromatin-associated protein, CHD1 (chromo-ATPase/helicase-DNA-binding domain), with features that led us to suspect that it might have an important role in the modification of chromatin structure. We now report on the characterization of the Drosophila melanogaster CHD1 homologue (dCHD1) and its localization on polytene chromosomes. A set of overlapping cDNAs encodes an 1883-aa open reading frame that is 50% identical and 68% similar to the mouse CHD1 sequence, including conservation of the three signature domains for which the protein was named. When the chromo and ATPase/helicase domain sequences in various CHD1 homologues were compared with the corresponding sequences in other proteins, certain distinctive features of the CHD1 chromo and ATPase/helicase domains were revealed. The dCHD1 gene was mapped to position 23C-24A on chromosome 2L. Western blot analyses with antibodies raised against a dCHD1 fusion protein specifically recognized an approximately 210-kDa protein in nuclear extracts from Drosophila embryos and cultured cells. Most interestingly, these antibodies revealed that dCHD1 localizes to sites of extended chromatin (interbands) and regions associated with high transcriptional activity (puffs) on polytene chromosomes from salivary glands of third instar larvae. These observations strongly support the idea that CHD1 functions to alter chromatin structure in a way that facilitates gene expression.

Journal Article
TL;DR: Novel evidence is provided for the existence of tumor suppressor genes on chromosome arms 6q and 15q that contribute commonly to the pathogenesis of parathyroid adenomas.
Abstract: Only one oncogene, cyclin D1/PRAD1, has an established role in parathyroid tumorigenesis, and parathyroid tumor suppressor genes on chromosome arms 1p and 11q, which still have not been identified, have also been implicated by loss of heterozygosity analysis. To investigate whether other putative tumor suppressor genes are involved in the pathogenesis of parathyroid adenomas, we performed a more comprehensive analysis of allelic losses in these tumors. Using 39 polymorphic markers, we examined each chromosome arm, excluding the short arms of the acrocentric chromosomes. In 25 parathyroid adenomas, frequent loss of heterozygosity, in > 25% of the informative cases, was observed on chromosome arms 6q (30%), 11p (27%), and 15q (35%), in addition to previously reported 1p (30%) and 11q (38%) allelic losses. To more specifically localize the smallest shared regions of molecular genetic deletion, we examined the following chromosomes in greater detail: chromosome 6 (9 additional markers), chromosome 11 (8 additional markers), and chromosome 15 (15 additional markers). The regions most commonly deleted in these tumors were 6q22-23, 6q26-27, 11q13, 15q11-21, and 15q26-qter. All tumors with 11p loss had patterns consistent with monosomy for chromosome 11. These findings provide novel evidence for the existence of tumor suppressor genes on chromosome arms 6q and 15q that contribute commonly to the pathogenesis of parathyroid adenomas.

Journal ArticleDOI
TL;DR: Analysis of parasite chromosomes by pulsed field gel electrophoresis demonstrates that most contain var genes and two‐dimensional PFGE has shown that var genes are located at chromosome ends interspersed amongst repetitive sequences present in the subtelomeric complex.
Abstract: PfEMP1, a Plasmodium falciparum-encoded protein on the surface of infected erythrocytes is a ligand that mediates binding to receptors on endothelial cells. The PfEMP1 protein, which is encoded by the large var gene family, shows antigenic variation and changes in binding phenotype associated with alterations in antigenicity. We have constructed a yeast artificial chromosome contig of chromosome 12 from P. falciparum and show that var genes are arranged in four clusters; two lie amongst repetitive subtelomeric sequences and two occur in the more conserved central region. Analysis of parasite chromosomes by pulsed field gel electrophoresis (PFGE) demonstrates that most contain var genes and two-dimensional PFGE has shown that var genes are located at chromosome ends interspersed amongst repetitive sequences present in the subtelomeric complex. Analysis of a var gene located in the subtelomeric region of chromosome 12 has shown that it has close homologues at the opposite end of the chromosome and in the subtelomeric region of two other chromosomes. This suggests that recombination between heterologous chromosomes has occurred in the subtelomeric regions of these chromosomes. The subtelomeric location of var genes dispersed amongst repetitive sequences has important implications for generation of antigenic variants and novel cytoadherent specificities of this protein.

Journal ArticleDOI
15 Aug 1996-Blood
TL;DR: The classical follicular variant of follicle center lymphoma (FCL-fo) is associated with the chromosomal translocation t(14;18)(q32;q21) but the sole presence of this translocation is not sufficient for malignant transformation, as demonstrated by experiments in a transgenic mouse model.

Journal Article
15 Aug 1996-Oncogene
TL;DR: The LOH data suggest that four tumor suppressor gene loci mapped to the central and distal portion of 6q may be independently deleted in breast cancer.
Abstract: Recent evidence obtained by cytogenetic and molecular studies indicates that in breast cancer chromosome 6q is often affected by genetic changes suggesting the existence of putative tumor suppressor genes (TSGs). However the function of gene(s) on this chromosome in breast cancer suppression is not understood. To substantiate further the presence of breast cancer related TSGs at 6q and to define their location, we first performed microcell-mediated transfer of chromosome 6 to CAL51 breast cancer cells for studying possible suppression of malignant phenotype and secondly, we analysed DNAs from 46 primary breast cancers for loss of constitutive heterozygosity (LOH) using 24 poly-morphic microsatellite markers. The chromosome transfer resulted in loss of tumorigenicity and reversion of other neoplastic properties of the microcell hybrids. Polymorphism analysis of single hybrids revealed that they harbored only a small donor chromosome fragment defined by the marker D6S310 (6q23.3-q25) and flanked by D6S292 and D6S311. The LOH data suggest that four tumor suppressor gene loci mapped to the central and distal portion of 6q may be independently deleted in breast cancer. One of these regions corresponds to the region identified by chromosome transfer.