scispace - formally typeset
Search or ask a question

Showing papers on "Chromosome published in 2007"


01 Jan 2007
TL;DR: In the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive whole-genome duplications as mentioned in this paper.
Abstract: The duplication of entire genomes has long been recognized as having great potential for evolutionary novelties, but the mechanisms underlying their resolution through gene loss are poorly understood. Here we show that in the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive whole-genome duplications. Phylogenetic analysis indicates that the most recent duplication coincides with an explosion of speciation events that gave rise to the P. aurelia complex of 15 sibling species. We observed that gene loss occurs over a long timescale, not as an initial massive event. Genes from the same metabolic pathway or protein complex have common patterns of gene loss, and highly expressed genes are over-retained after all duplications. The conclusion of this analysis is that many genes are maintained after whole-genome duplication not because of functional innovation but because of gene dosage constraints. Ciliates are unique among unicellular organisms in that they separate germline and somatic functions 1. Each cell harbours two kinds of nucleus, namely silent diploid micronuclei and highly polyploid macronuclei. The latter are unusual in that they contain an exten­ sively rearranged genome streamlined for expression and divide by a non-mitotic process. Only micronuclei undergo meiosis to perpetu­ ate genetic information; the macronuclei are lost at each sexual gen­ eration and develop anew from the micronuclear lineage. In Paramecillm the exact number of micronuclear chromosomes (more than 50) and the structures oftheir centromeres and telomeres remain unknown. During macronuclear development, these chro­ mosomes are amplified to about 800 copies and undergo two types of DNA elimination event. Tens of thousand of short, unique copy elements (internal eliminated sequences) are removed by a precise mechanism that leads to the reconstitution of functional genes 2 • Transposable elements and other repeated sequences are removed by an imprecise mechanism leading either to chromosome frag­ mentation and de novo telomere addition or to variable internal deletions'. These rearrangements occur after a few rounds of endoreplication, leading to some heterogeneity in the sequences abutting the imprecisely eliminated regions'. The sizes of the result­ ing' acentric macronuclear chromosomes range from 50-1,000 kilobases (kb) as measured by pulsed-field gel electrophoresis. Because the sexual process of autogamy results in an entirely homozygous genotype', the macronuclear DNA that was sequenced was genetic­ ally homogeneous.

671 citations


Journal ArticleDOI
TL;DR: A new covalent fluorescent pulse-chase labeling approach using SNAP tagging has now been developed and is used to demonstrate that CENP-A bound to a mature centromere is quantitatively and equally partitioned to sister centromeres generated during S phase, thereby remaining stably associated through multiple cell divisions.
Abstract: Centromeres direct chromosomal inheritance by nucleating assembly of the kinetochore, a large multiprotein complex required for microtubule attachment during mitosis. Centromere identity in humans is epigenetically determined, with no DNA sequence either necessary or sufficient. A prime candidate for the epigenetic mark is assembly into centromeric chromatin of centromere protein A (CENP-A), a histone H3 variant found only at functional centromeres. A new covalent fluorescent pulse-chase labeling approach using SNAP tagging has now been developed and is used to demonstrate that CENP-A bound to a mature centromere is quantitatively and equally partitioned to sister centromeres generated during S phase, thereby remaining stably associated through multiple cell divisions. Loading of nascent CENP-A on the megabase domains of replicated centromere DNA is shown to require passage through mitosis but not microtubule attachment. Very surprisingly, assembly and stabilization of new CENP-A–containing nucleosomes is restricted exclusively to the subsequent G1 phase, demonstrating direct coupling between progression through mitosis and assembly/maturation of the next generation of centromeres.

593 citations


Journal ArticleDOI
03 Aug 2007-Science
TL;DR: This work completely replaced the genome of a bacterial cell with one from another species by transplanting a whole genome as naked DNA into Mycoplasma capricolum cells by polyethylene glycol–mediated transformation.
Abstract: As a step toward propagation of synthetic genomes, we completely replaced the genome of a bacterial cell with one from another species by transplanting a whole genome as naked DNA. Intact genomic DNA from Mycoplasma mycoides large colony (LC), virtually free of protein, was transplanted into Mycoplasma capricolum cells by polyethylene glycol-mediated transformation. Cells selected for tetracycline resistance, carried by the M. mycoides LC chromosome, contain the complete donor genome and are free of detectable recipient genomic sequences. These cells that result from genome transplantation are phenotypically identical to the M. mycoides LC donor strain as judged by several criteria.

375 citations


Journal ArticleDOI
TL;DR: The results show that variants at 8q24 have different effects on cancer development that depend on the tissue type, and that the apportionment of risk among the variants differs significantly between the two cancers.
Abstract: Variants on chromosome 8q24 contribute risk for prostate cancer; here, we tested whether they also modulate risk for colorectal cancer. We studied 1,807 affected individuals and 5,511 controls and found that one variant, rs6983267, is also significantly associated with colorectal cancer (odds ratio = 1.22; P = 4.4 × 10−6) and that the apportionment of risk among the variants differs significantly between the two cancers. Comprehensive testing in the region uncovered variants capturing significant additional risk. Our results show that variants at 8q24 have different effects on cancer development that depend on the tissue type.

372 citations


Journal ArticleDOI
25 Jan 2007-Nature
TL;DR: The natural habitat of eukaryotic genomes is the cell nucleus, where each chromosome is confined to a discrete region, referred to as a chromosome territory, which is emerging as a crucial aspect of gene regulation and genome stability in health and disease.
Abstract: The natural habitat of eukaryotic genomes is the cell nucleus, where each chromosome is confined to a discrete region, referred to as a chromosome territory. This spatial organization is emerging as a crucial aspect of gene regulation and genome stability in health and disease.

348 citations


Journal ArticleDOI
TL;DR: Evidence is provided that such centromeric localization of hMis18 is essential for the subsequent recruitment of de novo-synthesized CENP-A, the complex of which is accumulated specifically at the telophase-G1 centromere.

343 citations


Journal ArticleDOI
TL;DR: The results indicate that at least two different mechanisms need to be distinguished giving rise to a tetraploid DNA content in the adult brain, and that Constitutional aneuploidy in differentiated neurons might be more frequent than previously thought.
Abstract: Reactivation of the cell cycle, including DNA replication, might play a major role in Alzheimer9s disease (AD). A more than diploid DNA content in differentiated neurons might alternatively result from chromosome mis-segregation during mitosis in neuronal progenitor cells. It was our objective to distinguish between these two mechanisms for aneuploidy and to provide evidence for a functional cell cycle in AD. Using slide-based cytometry, chromogenic in situ hybridization, and PCR amplification of alu -repeats, we quantified the DNA amount of identified cortical neurons in normal human brain and AD and analyzed the link between a tetraploid DNA content and expression of the early mitotic marker cyclin B1. In the normal brain, the number of neurons with a more than diploid content amounts to ∼10%. Less than 1% of neurons contains a tetraploid DNA content. These neurons do not express cyclin B1, most likely representing constitutional tetraploidy. This population of cyclin B1-negative tetraploid neurons, at a reduced number, is also present in AD. In addition, a population of cyclin B1-positive tetraploid neurons of ∼2% of all neurons was observed in AD. Our results indicate that at least two different mechanisms need to be distinguished giving rise to a tetraploid DNA content in the adult brain. Constitutional aneuploidy in differentiated neurons might be more frequent than previously thought. It is, however, not elevated in AD. In addition, in AD some neurons have re-entered the cell cycle and entirely passed through a functional interphase with a complete DNA replication.

255 citations


Journal ArticleDOI
TL;DR: A modified chromatin immunoprecipitation approach is developed and shown that yeast CENs have a single CenH3 nucleosome positioned over the CEN-determining elements, which forms the minimal unit of centromeric chromatin necessary for kinetochore assembly and proper chromosome segregation.
Abstract: Chromosome segregation ensures that DNA is equally divided between daughter cells during each round of cell division. The centromere (CEN) is the specific locus on each chromosome that directs formation of the kinetochore, the multiprotein complex that interacts with the spindle microtubules to promote proper chromosomal alignment and segregation during mitosis. CENs are organized into a specialized chromatin structure due to the incorporation of an essential CEN-specific histone H3 variant (CenH3) in the centromeric nucleosomes of all eukaryotes. Consistent with its essential role at the CEN, the loss or up-regulation of CenH3 results in mitotic defects. Despite the requirement for CenH3 in CEN function, it is unclear how CenH3 nucleosomes structurally organize centromeric DNA to promote formation of the kinetochore. To address this issue, we developed a modified chromatin immunoprecipitation approach to analyze the number and position of CenH3 nucleosomes at the budding yeast CEN. Using this technique, we show that yeast CENs have a single CenH3 nucleosome positioned over the CEN-determining elements. Therefore, a single CenH3 nucleosome forms the minimal unit of centromeric chromatin necessary for kinetochore assembly and proper chromosome segregation.

248 citations


Journal ArticleDOI
28 Dec 2007-Cell
TL;DR: It is proposed that CENP-B plays a dual role in centromere formation, ensuring de novo formation on DNA lacking a functional centre but preventing the formation of excess centromeres on chromosomes.

218 citations


Journal ArticleDOI
01 Apr 2007-Genetics
TL;DR: It is concluded that the divergence value is saturated, confirming the cessation of X–Y recombination in the evolution of the sex chromosomes at ∼10–20 MYA.
Abstract: SILENE latifolia is a model system for the study of the evolution of plant sex chromosomes. The sex chromosomes of dioecious Silene species have several striking similarities with those of animals, including mammals (Guttman and Charlesworth 1998; Filatov 2005c; Nicolas et al. 2005), but they evolved independently and much more recently. The recent origin in a largely hermaphroditic plant genus, and the evidence of synteny of sex-linked genes and their orthologs in the hermaphroditic species S. vulgaris (Filatov 2005a), show clearly that, like mammalian sex chromosomes, those in S. latifolia evolved from a pair of ordinary chromosomes. Due to its recent origin, the S. latifolia Y chromosome is probably in an early stage of degeneration. It is large in size, and it has been suggested that this reflects a large gene content (Negrutiu et al. 2001). However, this must be tested; an alternative is that the large size of the Y might reflect a highly repetitive DNA content, suggesting a stage in the degeneration process when repetitive sequences, including transposable elements, have probably accumulated, but before the stage in which most individual genes have lost function and can be deleted. The Y chromosome indeed appears to have accumulated chloroplast sequences (Kejnovsky et al. 2006), and there is also evidence of repetitive sequences and transposons in the S. latifolia genome (Pritham et al. 2003), but the extent of male-specific (Y-linked) sequence accumulation is not yet clear, although Y-specific sequences certainly exist (Donnison and Grant 1999). Similarly, the small Y chromosome-like region surrounding the sex-determining region in papaya (which may possibly have evolved more recently than the S. latifolia sex chromosomes) has a higher repetitive sequence content (and thus a lower gene density) than the genome as a whole (Liu et al. 2004). To make progress in understanding sex chromosome evolution and organization in plants, and to test for genetic degeneration of Y chromosomes, sex-linked genetic markers are required. Several kinds of Y-linked genetic markers have been developed in S. latifolia, including anonymous markers such as AFLPs and RAPDs (Di Stilio et al. 1998; Nakao et al. 2002; Obara et al. 2002). Although it is straightforward to develop such anonymous markers, which are useful for obtaining genetic maps of the sex chromosomes (Lebel-Hardenack et al. 2002; Moore et al. 2003; Zluvova et al. 2005; Scotti and Delph 2006), these markers provide no information about the age of the sex chromosome system or the times since recombination between the X and Y stopped in different regions of these chromosomes, nor about whether the Y chromosome is genetically degenerated or degenerating. Genic markers are thus potentially much more valuable than anonymous ones. Such markers provide access to the gene coding sequences, containing synonymous and nonsynonymous sites that are subject to different selective constraints in functional copies (Gillespie 1991; Ohta 1995), so that it becomes possible to estimate the divergence time between the X and Y copies and to test for genetic degeneration of Y-linked copies (Guttman and Charlesworth 1998; Nicolas et al. 2005). Such studies are progressing rapidly for the neo-Y chromosome of Drosophila miranda (Bachtrog 2003; Bachtrog 2004). Only seven genes on the Y chromosome of S. latifolia have been described after almost a decade of work (Guttman and Charlesworth 1998; Delichere et al. 1999; Atanassov et al. 2001; Matsunaga et al. 2003; Moore et al. 2003; Filatov 2005c; Nicolas et al. 2005). One of these has no X counterpart, being duplicated from an autosomal gene (Matsunaga et al. 2003), and only one is degenerated (Guttman and Charlesworth 1998). The five X-linked genes so far mapped are arranged along a gradient of X–Y synonymous divergence (Filatov 2005a), increasing with distance from the pseudoautosomal region (Filatov 2005a; Nicolas et al. 2005), although neither family allowed mapping all these genes. These findings suggest progressive steps in the cessation of recombination between the X and Y chromosomes, thus creating “evolutionary strata” on the sex chromosomes, similar to those described in mammalian X and Y chromosomes (Lahn and Page 1999). In the S. latifolia sex chromosomes, three divergence levels have been suggested. The two genes, SlX3/Y3 and SlX4/Y4, with the highest divergence have synonymous site divergence (Ks) >15%, while, for the least diverged pair, SlX1/Y1, Ks is only 3.6% (and intron divergence ∼2%), and two gene pairs, DD44X/DD44Y and SlSSX/SlSSY, have intermediate divergence (Ks ∼7–8%). With only five loci, discrete groupings of Ks values cannot be statistically significant, and the number is too low to formally test the ordering along the X chromosome of genes with different X–Y divergence in “evolutionary strata.” To answer these questions, and to help understand the evolution of sex chromosomes, we use straightforward genetic approaches to identify sex-linked genes in S. latifolia, based on cDNA sequences obtained from this species. By using segregation analysis of ISVS and single nucleotide polymorphisms (SNPs), we identify four new Y-linked loci with homologs on the X chromosome. Comparison of silent site divergence between pairs of X/Y homologs, together with genetic mapping of the X-linked copies, confirm the existence of a gradient in divergence (evolutionary strata) of genes in this sex chromosome system, which is much younger than the sex chromosomes of mammals or birds.

214 citations


Journal ArticleDOI
TL;DR: Two modes of chromosome evolution are found in the salmonids: in the Coregoninae and the Salmoninae the chromosomes have evolved by centric fusions of the Robertsonian type decreasing chromosome numbers (2n) while retaining chromosome arm numbers (NF) close to that finding in the hypothetical tetraploid ancestor so that most extant taxa have either type A or type B karyotypes.
Abstract: The karyotypes of salmonid fishes including taxa in the three subfamilies Coregoninae, Thymallinae and Salmoninae are described. This review is an update of the (Hartley, 1987) review of the chromosomes of salmonid fishes. As described in the previous review, the karyotypes of salmonid fishes fall into two main categories based on chromosome numbers: the type A karyotypes have diploid numbers close to 80 with approximately 100 chromosome arms (2n = 80, NF = 100), and the type B karyotypes have diploid numbers close to 60 with approximately 100 chromosome arms (2n = 60, NF = 100). In this paper we have proposed additional sub categories based on variation in the number of chromosome arms: the A' type with NF = 110-120, the A" type with NF greater than 140, and the B' type with NF less than 80. Two modes of chromosome evolution are found in the salmonids: in the Coregoninae and the Salmoninae the chromosomes have evolved by centric fusions of the Robertsonian type decreasing chromosome numbers (2n) while retaining chromosome arm numbers (NF) close to that found in the hypothetical tetraploid ancestor so that most extant taxa have either type A or type B karyotypes. In the Thymallinae, the chromosomes have evolved by inversions so that chromosome arm numbers (NF) have increased but chromosome numbers (2n) close to the karyotype of the hypothetical tetraploid ancestor have been retained and all taxa have type A' karyotypes. Most of the taxa with type B karyotypes in the Coregoninae and Salmoninae are members of the genus Oncorhynchus, although at least one example of type B karyotypes is found in all of the other genera. These taxa either have an anadromous life history or are found in specialized lacustrine environments. Selection for increases or decreases in genetic recombination as proposed by Qumsiyeh, 1994 could have been involved in the evolution of chromosome number in salmonid fishes.

Journal ArticleDOI
TL;DR: It is postulated that recurrent bouts of sex-ratio meiotic drive and its subsequent suppression might underlie several common features observed in the heterogametic sex, including meiotic sex chromosome inactivation and achiasmy.
Abstract: The evolution of heteromorphic sex chromosomes creates a genetic condition favoring the invasion of sex-ratio meiotic drive elements, resulting in the biased transmission of one sex chromosome over the other, in violation of Mendel's first law. The molecular mechanisms of sex-ratio meiotic drive may therefore help us to understand the evolutionary forces shaping the meiotic behavior of the sex chromosomes. Here we characterize a sex-ratio distorter on the X chromosome (Dox) in Drosophila simulans by genetic and molecular means. Intriguingly, Dox has very limited coding capacity. It evolved from another X-linked gene, which also evolved de nova. Through retrotransposition, Dox also gave rise to an autosomal suppressor, not much yang (Nmy). An RNA interference mechanism seems to be involved in the suppression of the Dox distorter by the Nmy suppressor. Double mutant males of the genotype dox; nmy are normal for both sex-ratio and spermatogenesis. We postulate that recurrent bouts of sex-ratio meiotic drive and its subsequent suppression might underlie several common features observed in the heterogametic sex, including meiotic sex chromosome inactivation and achiasmy.

Journal ArticleDOI
TL;DR: Assembly 21 reveals an ancient chromosome fusion, a number of small internal duplications followed by inversions, and a subtelomeric arrangement, including a new gene family, the TLO genes, in Candida albicans.
Abstract: Background: The 10.9× genomic sequence of Candida albicans, the most important human fungal pathogen, was published in 2004. Assembly 19 consisted of 412 supercontigs, of which 266 were a haploid set, since this fungus is diploid and contains an extensive degree of heterozygosity but lacks a complete sexual cycle. However, sequences of specific chromosomes were not determined. Results: Supercontigs from Assembly 19 (183, representing 98.4% of the sequence) were assigned to individual chromosomes purified by pulse-field gel electrophoresis and hybridized to DNA microarrays. Nine Assembly 19 supercontigs were found to contain markers from two different chromosomes. Assembly 21 contains the sequence of each of the eight chromosomes and was determined using a synteny analysis with preliminary versions of the Candida dubliniensis genome assembly, bioinformatics, a sequence tagged site (STS) map of overlapping fosmid clones, and an optical map. The orientation and order of the contigs on each chromosome, repeat regions too large to be covered by a sequence run, such as the ribosomal DNA cluster and the major repeat sequence, and telomere placement were determined using the STS map. Sequence gaps were closed by PCR and sequencing of the products. The overall assembly was compared to an optical map; this identified some misassembled contigs and gave a size estimate for each chromosome. Conclusion: Assembly 21 reveals an ancient chromosome fusion, a number of small internal duplications followed by inversions, and a subtelomeric arrangement, including a new gene family, the TLO genes. Correlations of position with relatedness of gene families imply a novel method of dispersion. The sequence of the individual chromosomes of C. albicans raises interesting biological

Journal ArticleDOI
TL;DR: It is proposed that H2A.Z plays an integral role in organizing centromere structure, and is identified as a new structural component of the Centromere.
Abstract: Mammalian centromere function depends upon a specialized chromatin organization where distinct domains of CENP-A and dimethyl K4 histone H3, forming centric chromatin, are uniquely positioned on or near the surface of the chromosome. These distinct domains are embedded in pericentric heterochromatin (characterized by H3 methylated at K9). The mechanisms that underpin this complex spatial organization are unknown. Here, we identify the essential histone variant H2A.Z as a new structural component of the centromere. Along linear chromatin fibers H2A.Z is distributed nonuniformly throughout heterochromatin, and centric chromatin where regions of nucleosomes containing H2A.Z and dimethylated K4 H3 are interspersed between subdomains of CENP-A. At metaphase, using the inactive X chromosome centromere as a model, complex folding of this fiber produces spatially positioned domains where H2A.Z/dimethylated K4 H3 chromatin juxtaposes one side of CENP-A chromatin, whereas a region of H2A/trimethyl K9 H3 borders the other side. A second region of H2A.Z is found, with trimethyl K9 H3 at the inner centromere. We therefore propose that H2A.Z plays an integral role in organizing centromere structure.

Journal ArticleDOI
TL;DR: The sex chromosome system is being exploited in economically important species and special strains have been devised for mass rearing of male-only broods in the silkworm for higher silk production and in pest species for the release of sterile males in pest management programs.
Abstract: The speciose insect order Lepidoptera (moths and butterflies) and their closest relatives, Trichoptera (caddis flies), share a female-heterogametic sex chromosome system. Originally a Z/ZZ (female/male) system, it evolved by chromosome rearrangement to a WZ/ZZ (female/male) system in the most species-rich branch of Lepidoptera, a monophyletic group consisting of Ditrysia and Tischeriina, which together comprise more than 98% of all species. Further sporadic rearrangements created multi-sex chromosome systems; sporadic losses of the W changed the system formally back to Z/ZZ in some species. Primary sex determination depends on a Z-counting mechanism in Z/ZZ species, but on a female-determining gene, Fem, in the W chromosome of the silkworm. The molecular mechanism is unknown in both cases. The silkworm shares the last step, dsx, of the hierarchical sex-determining pathway with Drosophila and other insects investigated, but probably not the intermediate steps between the primary signal and dsx. The W chromosome is heterochromatic in most species. It contains few genes and is flooded with interspersed repetitive elements. In interphase nuclei of females it is readily discernible as a heterochromatic body which grows with increasing degree of polyploidy in somatic cells. It is used as a marker for the genetic sex in studies of intersexes and Wolbachia infections. The sex chromosome system is being exploited in economically important species. Special strains have been devised for mass rearing of male-only broods in the silkworm for higher silk production and in pest species for the release of sterile males in pest management programs.

Journal ArticleDOI
TL;DR: Random inactivation of one of the two female X chromosomes establishes dosage compensation between XY males and XX females in placental mammals and is implicated in the mechanism of random choice.

Journal ArticleDOI
TL;DR: Comparing the 3D structures of two types of genomic domains as defined by the human transcriptome map shows that ridges are in general less condensed, more irregularly shaped, and located more closely to the nuclear center than antiridges.
Abstract: The three-dimensional (3D) organization of the chromosomal fiber in the human interphase nucleus is an important but poorly understood aspect of gene regulation. Here we quantitatively analyze and compare the 3D structures of two types of genomic domains as defined by the human transcriptome map. While ridges are gene dense and show high expression levels, antiridges, on the other hand, are gene poor and carry genes that are expressed at low levels. We show that ridges are in general less condensed, more irregularly shaped, and located more closely to the nuclear center than antiridges. Six human cell lines that display different gene expression patterns and karyotypes share these structural parameters of chromatin. This shows that the chromatin structures of these two types of genomic domains are largely independent of tissue-specific variations in gene expression and differentiation state. Moreover, we show that there is remarkably little intermingling of chromatin from different parts of the same chromosome in a chromosome territory, neither from adjacent nor from distant parts. This suggests that the chromosomal fiber has a compact structure that sterically suppresses intermingling. Together, our results reveal novel general aspects of 3D chromosome architecture that are related to genome structure and function.

Journal ArticleDOI
TL;DR: The identified candidate genes are likely to have distinct functional roles in the carcinogenesis and progression of CIN- and MIN-type sporadic CRCs and may be involved in the differential response of Cin- andMIN-type tumor cells to (adjuvant) therapy, such as 5-fluorouracil.
Abstract: DNA copy number changes represent molecular fingerprints of solid tumors and are as such relevant for better understanding of tumor development and progression. In this study, we applied genome-wide array comparative genomic hybridization (aCGH) to identify gene-specific DNA copy number changes in chromosomal (CIN)- and microsatellite (MIN)-unstable sporadic colorectal cancers (sCRC). Genomic DNA was extracted from microdissected, matching normal colorectal epithelium and invasive tumor cells of formalin-fixed and paraffin-embedded tissues of 22 cases with colorectal cancer (CIN = 11, MIN = 11). DNA copy number changes were determined by aCGH for 287 target sequences in tumor cell DNAs, using pooled normal DNAs as reference. aCGH data of tumor cell DNAs was confirmed by fluorescence in situ hybridization (FISH) for three genes on serial tissues as those used for aCGH. aCGH revealed DNA copy number changes previously described by metaphase CGH (gains 7, 8q, 13q, and 20q; losses 8p, 15q, 18q, and 17p). However, chromosomal regions 20q, 13q, 7, and 17p were preferentially altered in CIN-type tumors and included DNA amplifications of eight genes on chromosome 20q (TOP1, AIB1, MYBL2, CAS, PTPN1, STK15, ZNF217, and CYP24), two genes on chromosome 13q (BRCA2 and D13S25), and three genes on chromosome 7 (IL6, CYLN2, and MET) as well as DNA deletions of two genes on chromosome 17p (HIC1 and LLGL1). Finally, additional CIN-tumor-associated DNA amplifications were identified for EXT1 (8q24.11) and MYC (8q24.12) as well as DNA deletions for MAP2K5 (15q23) and LAMA3 (18q11.2). In contrast, distinct MIN-tumor-associated DNA amplifications were detected for E2F5 (8p22–q21.3), GARP (11q13.5–q14), ATM (11q22.3), KAL (Xp22.3), and XIST (Xq13.2) as well as DNA deletions for RAF1 (3p25), DCC (18q21.3), and KEN (21q tel). aCGH revealed distinct DNA copy number changes of oncogenes and tumor suppressor genes in CIN- and MIN-type sporadic colorectal carcinomas. The identified candidate genes are likely to have distinct functional roles in the carcinogenesis and progression of CIN- and MIN-type sporadic CRCs and may be involved in the differential response of CIN- and MIN-type tumor cells to (adjuvant) therapy, such as 5-fluorouracil.

Journal ArticleDOI
TL;DR: The results indicate that the origin of DNA replication is the only vital, unique cis‐acting DNA sequence in the E. coli chromosome necessary for survival.
Abstract: The minimal set of genetic information necessary and sufficient to sustain a functioning cell contains not only trans-acting genes, but also cis-acting chromosomal regions that cannot be complemented by plasmids carrying these regions. In Escherichia coli (E. coli), only one chromosomal region, the origin of replication has been identified to be cis-acting. We constructed a series of mutants with long-range deletions, and the chromosomal regions containing trans-acting essential genes were deleted in the presence of plasmids complementing the deleted genes. The deleted regions cover all regions of the chromosome except for the origin and terminus of replication. The terminus affects cell growth, but is not essential. Our results indicate that the origin of DNA replication is the only vital, unique cis-acting DNA sequence in the E. coli chromosome necessary for survival.

Journal ArticleDOI
TL;DR: This review describes the development of methods for the preparation of intact chromosome suspensions from the major cereals, and their analysis and sorting using flow cytometry, and presents some examples demonstrating that a chromosome-based approach is advantageous for the analysis of the complex genomes of cereals.
Abstract: The cereals are of enormous importance to mankind. Many of the major cereal species - specifically, wheat, barley, oat, rye, and maize - have large genomes. Early cytogenetics, genome analysis and genetic mapping in the cereals benefited greatly from their large chromosomes, and the allopolyploidy of wheat and oats that has allowed for the development of many precise cytogenetic stocks. In the genomics era, however, large genomes are disadvantageous. Sequencing large and complex genomes is expensive, and the assembly of genome sequence is hampered by a significant content of repetitive DNA and, in allopolyploids, by the presence of homoeologous genomes. Dissection of the genome into its component chromosomes and chromosome arms provides an elegant solution to these problems. In this review we illustrate how this can be achieved by flow cytometric sorting. We describe the development of methods for the preparation of intact chromosome suspensions from the major cereals, and their analysis and sorting using flow cytometry. We explain how difficulties in the discrimination of specific chromosomes and their arms can be overcome by exploiting extant cytogenetic stocks of polyploid wheat and oats, in particular chromosome deletion and alien addition lines. Finally, we discuss some of the applications of flow-sorted chromosomes, and present some examples demonstrating that a chromosome-based approach is advantageous for the analysis of the complex genomes of cereals, and that it can offer significant potential for the delivery of genome sequencing and gene cloning in these crops.

Journal ArticleDOI
TL;DR: Close evolutionary relationships among some cytotypes are suggested based on the similarity in homoploid genome sizes and geographical grouping, and a new species combination, Curcuma scaposa (Nimmo), is proposed.

Journal ArticleDOI
TL;DR: By using telomere-mediated chromosomal truncation, it was demonstrated that such an approach is feasible for the generation of minichromosomes of normal A chromosomes by selection of spontaneous polyploid events that compensate for the deficiencies produced.
Abstract: Engineered minichromosomes were constructed in maize by modifying natural A and supernumerary B chromosomes. By using telomere-mediated chromosomal truncation, it was demonstrated that such an approach is feasible for the generation of minichromosomes of normal A chromosomes by selection of spontaneous polyploid events that compensate for the deficiencies produced. B chromosomes are readily fractionated by biolistic transformation of truncating plasmids. Foreign genes were faithfully expressed from integrations into normal B chromosomes and from truncated miniB chromosomes. Site-specific recombination between the terminal transgene on a miniA chromosome and a terminal site on a normal chromosome was demonstrated. It was also found that the miniA chromosome did not pair with its progenitor chromosomes during meiosis, indicating a useful property for such constructs. The miniB chromosomes are faithfully transmitted from one generation to the next but can be changed in dosage in the presence of normal B chromosomes. This approach for construction of engineered chromosomes can be easily extended to other plant species because it does not rely on cloned centromere sequences, which are species-specific. These platforms will provide avenues for studies on plant chromosome structure and function and for future developments in biotechnology and agriculture.

Journal ArticleDOI
TL;DR: Not only is the sequence of centromeric tandem and non-tandem repeats highly variable but also the copy number, spacing, order and orientation, providing ample natural variation as the basis for selection of superior centromere performance.

Journal ArticleDOI
TL;DR: It is concluded that chromosome instability generates the necessary chromosome diversity in the tumor cell populations and, therefore, the transcriptome diversity to allow for environment-facilitated clonal expansion and clonal evolution of tumorcell populations.
Abstract: Chromosome instability and aneuploidy are hallmarks of cancer, but it is not clear how changes in the chromosomal content of a cell contribute to the malignant phenotype. Previously we have shown that we can readily isolate highly proliferative tumor cells and their revertants from highly invasive tumor cell populations, indicating how phenotypic shifting can contribute to malignant progression. Here we show that chromosome instability and changes in chromosome content occur with phenotypic switching. Further, we show that changes in the copy number of each chromosome quantitatively impose a proportional change in the chromosome transcriptome ratio. This correlation also applies to subchromosomal regions of derivative chromosomes. Importantly, we show that the changes in chromosome content and the transcriptome favor the expression of a large number of genes appropriate for the specific tumor phenotype. We conclude that chromosome instability generates the necessary chromosome diversity in the tumor cell populations and, therefore, the transcriptome diversity to allow for environment-facilitated clonal expansion and clonal evolution of tumor cell populations.

Journal ArticleDOI
TL;DR: The forces limiting bacterial genome plasticity in Escherichia coli are assessed by measuring the respective effect of altering different parameters, including DNA replication, compositional skew of replichores, coordination of gene expression with DNA replication), replication-associated gene dosage, and chromosome organization into macrodomains.
Abstract: Chromosome organizations of related bacterial genera are well conserved despite a very long divergence period. We have assessed the forces limiting bacterial genome plasticity in Escherichia coli by measuring the respective effect of altering different parameters, including DNA replication, compositional skew of replichores, coordination of gene expression with DNA replication, replication-associated gene dosage, and chromosome organization into macrodomains. Chromosomes were rearranged by large inversions. Changes in the compositional skew of replichores, in the coordination of gene expression with DNA replication or in the replication-associated gene dosage have only a moderate effect on cell physiology because large rearrangements inverting the orientation of several hundred genes inside a replichore are only slightly detrimental. By contrast, changing the balance between the two replication arms has a more drastic effect, and the recombinational rescue of replication forks is required for cell viability when one of the chromosome arms is less than half than the other one. Macrodomain organization also appears to be a major factor restricting chromosome plasticity, and two types of inverted configurations severely affect the cell cycle. First, the disruption of the Ter macrodomain with replication forks merging far from the normal replichore junction provoked chromosome segregation defects. The second major problematic configurations resulted from inversions between Ori and Right macrodomains, which perturb nucleoid distribution and early steps of cytokinesis. Consequences for the control of the bacterial cell cycle and for the evolution of bacterial chromosome configuration are discussed.

Journal ArticleDOI
TL;DR: The absence of homology between the bird Z chromosome and the snake and turtle Z sex chromosomes suggests that the origin of the sex chromosomes and the causative genes of sex determination are different between birds and reptiles.
Abstract: Recent progress of chicken genome projects has revealed that bird ZW and mammalian XY sex chromosomes were derived from different autosomal pairs of the common ancestor; however, the evolutionary relationship between bird and reptilian sex chromosomes is still unclear. The Chinese soft-shelled turtle (Pelodiscus sinensis) exhibits genetic sex determination, but no distinguishable (heteromorphic) sex chromosomes have been identified. In order to investigate this further, we performed molecular cytogenetic analyses of this species, and thereby identified ZZ/ZW-type micro-sex chromosomes. In addition, we cloned reptile homologues of chicken Z-linked genes from three reptilian species, the Chinese soft-shelled turtle and the Japanese four-striped rat snake (Elaphe quadrivirgata), which have heteromorphic sex chromosomes, and the Siam crocodile (Crocodylus siamensis), which exhibits temperature-dependent sex determination and lacks sex chromosomes. We then mapped them to chromosomes of each species using FISH. The linkage of the genes has been highly conserved in all species: the chicken Z chromosome corresponded to the turtle chromosome 6q, snake chromosome 2p and crocodile chromosome 3. The order of the genes was identical among the three species. The absence of homology between the bird Z chromosome and the snake and turtle Z sex chromosomes suggests that the origin of the sex chromosomes and the causative genes of sex determination are different between birds and reptiles.

Journal ArticleDOI
TL;DR: Comparative analysis of carefully selected plant species together with some fish species promises new insights into the origins of sex chromosomes and the selective forces driving their evolution.
Abstract: Sex chromosomes in dioecious and polygamous plants evolved as a mechanism for ensuring outcrossing to increase genetic variation in the offspring. Sex specificity has evolved in 75% of plant families by male sterile or female sterile mutations, but well-defined heteromorphic sex chromosomes are known in only four plant families. A pivotal event in sex chromosome evolution, suppression of recombination at the sex determination locus and its neighboring regions, might be lacking in most dioecious species. However, once recombination is suppressed around the sex determination region, an incipient Y chromosome starts to differentiate by accumulating deleterious mutations, transposable element insertions, chromosomal rearrangements, and selection for male-specific alleles. Some plant species have recently evolved homomorphic sex chromosomes near the inception of this evolutionary process, while a few other species have sufficiently diverged heteromorphic sex chromosomes. Comparative analysis of carefully selected plant species together with some fish species promises new insights into the origins of sex chromosomes and the selective forces driving their evolution.

Journal ArticleDOI
TL;DR: An integrated molecular linkage map of A genome diploid wheat based on 93 recombinant inbred lines (RILs) derived from Triticum boeoticum × Triticum monococcum inter sub-specific cross is reported.
Abstract: Diploid A genome species of wheat harbour immense variability for biotic stresses and productivity traits, and these could be transferred efficiently to hexaploid wheat through marker assisted selection, provided the target genes are tagged at diploid level first. Here we report an integrated molecular linkage map of A genome diploid wheat based on 93 recombinant inbred lines (RILs) derived from Triticum boeoticum × Triticum monococcum inter sub-specific cross. The parental lines were analysed with 306 simple sequence repeat (SSR) and 194 RFLP markers, including 66 bin mapped ESTs. Out of 306 SSRs tested for polymorphism, 74 (24.2%) did not show amplification (null) in both the parents. Overall, 171 (73.7%) of the 232 remaining SSR and 98 (50.5%) of the 194 RFLP markers were polymorphic. Both A and D genome specific SSR markers showed similar transferability to A genome of diploid wheat species. The 176 polymorphic markers, that were assayed on a set of 93 RILs, yielded 188 polymorphic loci and 177 of these as well as two additional morphological traits mapped on seven linkage groups with a total map length of 1,262 cM, which is longer than most of the available A genome linkage maps in diploid and hexaploid wheat. About 58 loci showed distorted segregation with majority of these mapping on chromosome 2Am. With a few exceptions, the position and order of the markers was similar to the ones in other maps of the wheat A genome. Chromosome 1Am of T. monococcum and T. boeoticum showed a small paracentric inversion relative to the A genome of hexaploid wheat. The described linkage map could be useful for gene tagging, marker assisted gene introgression from diploid into hexaploid wheat as well as for map based cloning of genes from diploid A genome species and orthologous genes from hexaploid wheat.

Journal ArticleDOI
TL;DR: The divided genome and delayed replication of chromosome II may reduce the metabolic burden and complexity of chromosome replication by postponing DNA synthesis to the last part of the cell cycle and reducing the need for overlapping replication cycles during rapid proliferation.
Abstract: The bacterium Vibrio cholerae, the cause of the diarrhoeal disease cholera, has its genome divided between two chromosomes, a feature uncommon for bacteria. The two chromosomes are of different sizes and different initiator molecules control their replication independently. Using novel methods for analysing flow cytometry data and marker frequency analysis, we show that the small chromosome II is replicated late in the C period of the cell cycle, where most of chromosome I has been replicated. Owing to the delay in initiation of chromosome II, the two chromosomes terminate replication at approximately the same time and the average number of replication origins per cell is higher for chromosome I than for chromosome II. Analysis of cell-cycle parameters shows that chromosome replication and segregation is exceptionally fast in V. cholerae. The divided genome and delayed replication of chromosome II may reduce the metabolic burden and complexity of chromosome replication by postponing DNA synthesis to the last part of the cell cycle and reducing the need for overlapping replication cycles during rapid proliferation.

Journal ArticleDOI
Bin Hu1, Guohua Yang1, Weixing Zhao1, Yingjiao Zhang, Jindong Zhao1 
TL;DR: It is demonstrated that DNA content in two daughter cells after cell division in both strains was not always identical, suggesting that chromosome partitioning is a random process.
Abstract: MreB is a bacterial actin that plays important roles in determination of cell shape and chromosome partitioning in Escherichia coli and Caulobacter crescentus. In this study, the mreB from the filamentous cyanobacterium Anabaena sp. PCC 7120 was inactivated. Although the mreB null mutant showed a drastic change in cell shape, its growth rate, cell division and the filament length were unaltered. Thus, MreB in Anabaena maintains cell shape but is not required for chromosome partitioning. The wild type and the mutant had eight and 10 copies of chromosomes per cell respectively. We demonstrated that DNA content in two daughter cells after cell division in both strains was not always identical. The ratios of DNA content in two daughter cells had a Gaussian distribution with a standard deviation much larger than a value expected if the DNA content in two daughter cells were identical, suggesting that chromosome partitioning is a random process. The multiple copies of chromosomes in cyanobacteria are likely required for chromosome random partitioning in cell division.