scispace - formally typeset
Search or ask a question

Showing papers on "Communications system published in 2017"


Journal ArticleDOI
TL;DR: In this article, an end-to-end reconstruction task was proposed to jointly optimize transmitter and receiver components in a single process, which can be extended to networks of multiple transmitters and receivers.
Abstract: We present and discuss several novel applications of deep learning for the physical layer. By interpreting a communications system as an autoencoder, we develop a fundamental new way to think about communications system design as an end-to-end reconstruction task that seeks to jointly optimize transmitter and receiver components in a single process. We show how this idea can be extended to networks of multiple transmitters and receivers and present the concept of radio transformer networks as a means to incorporate expert domain knowledge in the machine learning model. Lastly, we demonstrate the application of convolutional neural networks on raw IQ samples for modulation classification which achieves competitive accuracy with respect to traditional schemes relying on expert features. This paper is concluded with a discussion of open challenges and areas for future investigation.

1,879 citations


Journal ArticleDOI
TL;DR: This survey provides the reader with comprehensive details on the use of space-based optical backhaul links in order to provide high capacity and low cost backhaul solutions.
Abstract: In recent years, free space optical (FSO) communication has gained significant importance owing to its unique features: large bandwidth, license free spectrum, high data rate, easy and quick deployability, less power, and low mass requirements. FSO communication uses optical carrier in the near infrared band to establish either terrestrial links within the Earth’s atmosphere or inter-satellite/deep space links or ground-to-satellite/satellite-to-ground links. It also finds its applications in remote sensing, radio astronomy, military, disaster recovery, last mile access, backhaul for wireless cellular networks, and many more. However, despite of great potential of FSO communication, its performance is limited by the adverse effects (viz., absorption, scattering, and turbulence) of the atmospheric channel. Out of these three effects, the atmospheric turbulence is a major challenge that may lead to serious degradation in the bit error rate performance of the system and make the communication link infeasible. This paper presents a comprehensive survey on various challenges faced by FSO communication system for ground-to-satellite/satellite-to-ground and inter-satellite links. It also provides details of various performance mitigation techniques in order to have high link availability and reliability. The first part of this paper will focus on various types of impairments that pose a serious challenge to the performance of optical communication system for ground-to-satellite/satellite-to-ground and inter-satellite links. The latter part of this paper will provide the reader with an exhaustive review of various techniques both at physical layer as well as at the other layers (link, network, or transport layer) to combat the adverse effects of the atmosphere. It also uniquely presents a recently developed technique using orbital angular momentum for utilizing the high capacity advantage of optical carrier in case of space-based and near-Earth optical communication links. This survey provides the reader with comprehensive details on the use of space-based optical backhaul links in order to provide high capacity and low cost backhaul solutions.

970 citations


Journal ArticleDOI
TL;DR: A comprehensive survey of mmWave communications for future mobile networks (5G and beyond) is presented, including an overview of the solution for multiple access and backhauling, followed by the analysis of coverage and connectivity.
Abstract: Millimeter wave (mmWave) communications have recently attracted large research interest, since the huge available bandwidth can potentially lead to the rates of multiple gigabit per second per user Though mmWave can be readily used in stationary scenarios, such as indoor hotspots or backhaul, it is challenging to use mmWave in mobile networks, where the transmitting/receiving nodes may be moving, channels may have a complicated structure, and the coordination among multiple nodes is difficult To fully exploit the high potential rates of mmWave in mobile networks, lots of technical problems must be addressed This paper presents a comprehensive survey of mmWave communications for future mobile networks (5G and beyond) We first summarize the recent channel measurement campaigns and modeling results Then, we discuss in detail recent progresses in multiple input multiple output transceiver design for mmWave communications After that, we provide an overview of the solution for multiple access and backhauling, followed by the analysis of coverage and connectivity Finally, the progresses in the standardization and deployment of mmWave for mobile networks are discussed

887 citations


Journal ArticleDOI
TL;DR: This survey surveys different technologies and methodologies for indoor and outdoor localization with an emphasis on indoor methodologies and concepts and discusses different localization-based applications, where the location information is critical to estimate.
Abstract: The availability of location information has become a key factor in today's communications systems allowing location based services. In outdoor scenarios, the mobile terminal position is obtained with high accuracy thanks to the global positioning system (GPS) or to the standalone cellular systems. However, the main problem of GPS and cellular systems resides in the indoor environment and in scenarios with deep shadowing effects where the satellite or cellular signals are broken. In this paper, we survey different technologies and methodologies for indoor and outdoor localization with an emphasis on indoor methodologies and concepts. Additionally, we discuss in this review different localization-based applications, where the location information is critical to estimate. Finally, a comprehensive discussion of the challenges in terms of accuracy, cost, complexity, security, scalability, etc. is given. The aim of this survey is to provide a comprehensive overview of existing efforts as well as auspicious and anticipated dimensions for future work in indoor localization techniques and applications.

705 citations


Journal ArticleDOI
TL;DR: This paper presents a comprehensive overview of the emerging studies on DL-based physical layer processing, including leveraging DL to redesign a module of the conventional communication system and replace the communication system with a radically new architecture based on an autoencoder.
Abstract: Machine learning (ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio and communication network. However, its application to the physical layer is hampered by sophisticated channel environments and limited learning ability of conventional ML algorithms. Deep learning (DL) has been recently applied for many fields, such as computer vision and natural language processing, given its expressive capacity and convenient optimization capability. The potential application of DL to the physical layer has also been increasingly recognized because of the new features for future communications, such as complex scenarios with unknown channel models, high speed and accurate processing requirements; these features challenge conventional communication theories. This paper presents a comprehensive overview of the emerging studies on DL-based physical layer processing, including leveraging DL to redesign a module of the conventional communication system (for modulation recognition, channel decoding, and detection) and replace the communication system with a radically new architecture based on an autoencoder. These DL-based methods show promising performance improvements but have certain limitations, such as lack of solid analytical tools and use of architectures that are specifically designed for communication and implementation research, thereby motivating future research in this field.

513 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive survey on various challenges faced by free space optical communication (FSO) communication system for ground-to-satellite (G2S) or satellite-toground (S2G) and inter-Satellite (I2I) links.
Abstract: In recent years, free space optical communication has gained significant importance owing to its unique features: large bandwidth, license-free spectrum, high data rate, easy and quick deployability, less power and low mass requirements. FSO communication uses the optical carrier in the near infrared band to establish either terrestrial links within the Earth's atmosphere or inter-satellite or deep space links or ground-to-satellite or satellite-to-ground links. However, despite the great potential of FSO communication, its performance is limited by the adverse effects viz., absorption, scattering, and turbulence of the atmospheric channel. This paper presents a comprehensive survey on various challenges faced by FSO communication system for ground-to-satellite or satellite-to-ground and inter-satellite links. It also provides details of various performance mitigation techniques in order to have high link availability and reliability. The first part of the paper will focus on various types of impairments that pose a serious challenge to the performance of optical communication system for ground-to-satellite or satellite-to-ground and inter-satellite links. The latter part of the paper will provide the reader with an exhaustive review of various techniques both at physical layer as well as at the other layers i.e., link, network or transport layer to combat the adverse effects of the atmosphere. It also uniquely presents a recently developed technique using orbital angular momentum for utilizing the high capacity advantage of the optical carrier in case of space-based and near-Earth optical communication links. This survey provides the reader with comprehensive details on the use of space-based optical backhaul links in order to provide high-capacity and low-cost backhaul solutions.

479 citations


Journal ArticleDOI
TL;DR: In this paper, the authors give an overview on the various radiative wireless power transfer (WPT) technologies, the historical development of the radiative WPT technology and the main challenges in designing contemporary WPT systems, focusing on the state-of-the-art communication and signal processing techniques that can be applied to tackle these challenges.
Abstract: Radiative wireless power transfer (WPT) is a promising technology to provide cost-effective and real-time power supplies to wireless devices. Although radiative WPT shares many similar characteristics with the extensively studied wireless information transfer or communication, they also differ significantly in terms of design objectives, transmitter/receiver architectures and hardware constraints, and so on. In this paper, we first give an overview on the various WPT technologies, the historical development of the radiative WPT technology and the main challenges in designing contemporary radiative WPT systems. Then, we focus on the state-of-the-art communication and signal processing techniques that can be applied to tackle these challenges. Topics discussed include energy harvester modeling, energy beamforming for WPT, channel acquisition, power region characterization in multi-user WPT, waveform design with linear and non-linear energy receiver model, safety and health issues of WPT, massive multiple-input multiple-output and millimeter wave enabled WPT, wireless charging control, and wireless power and communication systems co-design. We also point out directions that are promising for future research.

408 citations


Journal ArticleDOI
TL;DR: The specific signal characteristics of 5G communication turn out to be highly conducive for vehicle positioning and can work in synergy with existing on-vehicle positioning and mapping systems to provide redundancy for certain applications, in particular automated driving.
Abstract: 5G technologies present a new paradigm to provide connectivity to vehicles, in support of high data-rate services, complementing existing inter-vehicle communication standards based on IEEE 802.11p. As we argue, the specific signal characteristics of 5G communication turn out to be highly conducive for vehicle positioning. Hence, 5G can work in synergy with existing on-vehicle positioning and mapping systems to provide redundancy for certain applications, in particular automated driving. This article provides an overview of the evolution of cellular positioning and discusses the key properties of 5G as they relate to vehicular positioning. Open research challenges are presented.

371 citations


Journal ArticleDOI
TL;DR: The delay and packet loss components in UR LLC and the network availability for supporting the quality of service of users are discussed and tools for resource optimization in URLLC are presented.
Abstract: Supporting ultra-reliable and low-latency communications (URLLC) is one of the major goals in 5G communication systems. Previous studies focus on ensuring end-to-end delay requirement by reducing transmission delay and coding delay, and only consider reliability in data transmission. However, the reliability reflected by overall packet loss also includes other components such as queueing delay violation. Moreover, which tools are appropriate to design radio resource allocation under constraints on delay, reliability, and availability is not well understood. As a result, how to optimize resource allocation for URLLC is still unclear. In this article, we first discuss the delay and packet loss components in URLLC and the network availability for supporting the quality of service of users. Then we present tools for resource optimization in URLLC. Last, we summarize the major challenges related to resource management for URLLC, and perform a case study.

308 citations


Journal ArticleDOI
TL;DR: This work proposes a direct localization approach in which the position of a user is localized by jointly processing the observations obtained at distributed massive MIMO base stations, and leads to improved performance results compared to previous existing methods.
Abstract: Large-scale MIMO systems are well known for their advantages in communications, but they also have the potential for providing very accurate localization, thanks to their high angular resolution. A difficult problem arising indoors and outdoors is localizing users over multipath channels. Localization based on angle of arrival (AOA) generally involves a two-step procedure, where signals are first processed to obtain a user's AOA at different base stations, followed by triangulation to determine the user's position. In the presence of multipath, the performance of these methods is greatly degraded due to the inability to correctly detect and/or estimate the AOA of the line-of-sight (LOS) paths. To counter the limitations of this two-step procedure which is inherently suboptimal, we propose a direct localization approach in which the position of a user is localized by jointly processing the observations obtained at distributed massive MIMO base stations. Our approach is based on a novel compressed sensing framework that exploits channel properties to distinguish LOS from non-LOS signal paths, and leads to improved performance results compared to previous existing methods.

291 citations


Journal ArticleDOI
TL;DR: Simulation results show that the proposed scheme significantly improves the spectrum sharing performance in various scenarios and provides efficient algorithms for the proposed optimization problem, along with insight on the feasibility and properties of the proposed design.
Abstract: The paper proposes a cooperative scheme for the coexistence of a multiple-input-multiple-output (MIMO) communication system and a matrix completion (MC) based, collocated MIMO (MIMO-MC) radar. To facilitate the coexistence, and also deal with clutter, both the radar and the communication systems use transmit precoding. For waveform flexibility, the radar uses a random unitary waveform matrix. We prove that for such waveforms and any precoding matrix, the error performance of MC is guaranteed. The radar transmit precoder, the radar subsampling scheme, and the communication transmit covariance matrix are jointly designed in order to maximize the radar SINR, while meeting certain communication rate and power constraints. The joint design is implemented at a control center, which is a node with whom both systems share physical layer information, and which also performs data fusion for the radar. We provide efficient algorithms for the proposed optimization problem, along with insight on the feasibility and properties of the proposed design. Simulation results show that the proposed scheme significantly improves the spectrum sharing performance in various scenarios.

Journal ArticleDOI
TL;DR: Analytically show that a legacy system—employing an orthogonal frequency-division multiplexing (OFDM) modulation scheme—can turn the RF interference arising from the backscatter process into a form of multipath diversity that can be exploited to increase its performance.
Abstract: Ambient backscatter is an intriguing wireless communication paradigm that allows small devices to compute and communicate by using only the power they harvest from far-field radio-frequency (RF) signals in the air. Ambient backscattering devices reflect RF signals emitted by existing or legacy communications systems, such as digital TV broadcasting, cellular, or Wi-Fi ones, which are designed for transporting information and are not intended for RF energy transfer. This paper deals with mathematical modeling and performance analysis of wireless broadband networks operating over fading channels with ambient backscatter devices. After introducing a detailed signal model of the relevant communication links, we study the influence of physical parameters on the capacity of both legacy and backscatter channels, by considering different receiver architectures. We analytically show that, under reasonable operative conditions, a legacy system—employing an orthogonal frequency-division multiplexing (OFDM) modulation scheme—can turn the RF interference arising from the backscatter process into a form of multipath diversity that can be exploited to increase its performance. Moreover, our analysis proves that a backscatter system—transmitting one symbol per OFDM symbol of the legacy system—can achieve satisfactory data rates over relatively short distances, especially when the intended recipient of the backscatter signal is co-located with the legacy transmitter, i.e., they are on the same device.

Patent
26 Jan 2017
TL;DR: In this paper, the authors present a method and apparatus for efficiently directing communications in a cellular network, where a mobile terminal receives a communication directed to a cellular communication network, the communication being received in an alternative channel that differs from a channel of the cellular network.
Abstract: Methods and apparatus for efficiently directing communications are disclosed. On example entails receiving, from a mobile terminal, a communication directed to a cellular communication network, the communication being received in an alternative channel that differs from a channel of the cellular communication network. The communication is then converted for a relayed communication to the cellular communication network on behalf of the mobile terminal, the relayed communication being made through the cellular communication network.

Journal ArticleDOI
TL;DR: This paper surveys different measurement techniques and strategies for range based and range free localization with an emphasis on the latter and discusses different localization-based applications, where the estimation of the location information is crucial.
Abstract: Localization is an important aspect in the field of wireless sensor networks (WSNs) that has developed significant research interest among academia and research community. Wireless sensor network is formed by a large number of tiny, low energy, limited processing capability and low-cost sensors that communicate with each other in ad-hoc fashion. The task of determining physical coordinates of sensor nodes in WSNs is known as localization or positioning and is a key factor in today’s communication systems to estimate the place of origin of events. As the requirement of the positioning accuracy for different applications varies, different localization methods are used in different applications and there are several challenges in some special scenarios such as forest fire detection. In this paper, we survey different measurement techniques and strategies for range based and range free localization with an emphasis on the latter. Further, we discuss different localization-based applications, where the estimation of the location information is crucial. Finally, a comprehensive discussion of the challenges such as accuracy, cost, complexity, and scalability are given.

Journal ArticleDOI
TL;DR: The benefits of using UAVs for this function include significantly decreasing sensor node energy consumption, lower interference, and offers considerably increased flexibility in controlling the density of the deployed nodes since the need for the multihop approach for sensor-to-sink communication is either eliminated or significantly reduced.

Book
14 Aug 2017
TL;DR: This book discusses mobile positioning solutions applied on top of current wireless communication networks and introduces advanced and novel topics such as localization in heterogeneous and cooperative networks, providing a unified treatment of the topic for researchers and industry professionals alike.
Abstract: This book presents the most recent state of the art in mobile positioning and tracking techniques. This book discusses mobile positioning solutions applied on top of current wireless communication networks. In addition, the authors introduce advanced and novel topics such as localization in heterogeneous and cooperative networks, providing a unified treatment of the topic for researchers and industry professionals alike. Furthermore, the book focuses on application areas of positioning, basics of wireless communications for positioning, data fusion and filtering techniques, fundamentals of tracking, error mitigation techniques, positioning systems and technologies, and cooperative mobile positioning systems. Key Features: Covers the state of the art of satellite- and terrestrial-based positioning systems, spanning from outdoor to indoor environments and from wide area networks to short-range networks Discusses a whole range of topics related to mobile positioning: from fundamentals of positioning to the description of a wide spectrum of mobility models for tracking, from details on data fusion and filtering techniques to error mitigation techniques (including aspects of signal processing) Provides a solid bridge between research and industry envisaging a potential implementation of the presented solutions Fills the gap between positioning and communication systems, showing how features of communication systems can be used for positioning purposes and how the retrieved location information can be used to enhance the performance of wireless networks. Includes an accompanying website This book will be a valuable guide for advanced students studying related courses. Professionals and practitioners in the field of positioning and mobile technologies, and software and service developers will also find this book of interest.

Journal ArticleDOI
TL;DR: A big data computing architecture for smart grid analytics, which involves data resources, transmission, storage, and analysis, and a hybrid approach is adopted for the optimization including GA for storage planning and a game theoretic inner optimization for daily energy scheduling.
Abstract: The development of smart grid brings great improvement in the efficiency, reliability, and economics to power grid. However, at the same time, the volume and complexity of data in the grid explode. To address this challenge, big data technology is a strong candidate for the analysis and processing of smart grid data. In this article, we propose a big data computing architecture for smart grid analytics, which involves data resources, transmission, storage, and analysis. In order to enable big data computing in smart grid, a communication architecture is then described consisting of four main domains. Key technologies to enable big-data-aware wireless communication for smart grid are investigated. As a case study of the proposed architecture, we introduce a big-data- enabled storage planning scheme based on wireless big data computing. A hybrid approach is adopted for the optimization including GA for storage planning and a game theoretic inner optimization for daily energy scheduling. Simulation results indicate that the proposed storage planning scheme greatly reduce

Proceedings ArticleDOI
04 Jun 2017
TL;DR: In this paper, a performance evaluation of Orthogonal Time Frequency Space (OTFS) at 5G mm-wave frequencies is presented, which shows that OTFS has lower BER than OFDM in a number of situations.
Abstract: Due to the increased demand for data rate, flexibility, and reliability of 5G cellular systems, new modulation formats need to be considered. A recently proposed scheme, Orthogonal Time Frequency Space (OTFS), offers various advantages in particular in environments with high frequency dispersion. Such environments are encountered, e.g, in mm-wave systems, both due to the higher phase noise, and the larger Doppler spreads encountered there. The current paper provides a performance evaluation of OTFS at 5G mm-wave frequencies. Comparisons with OFDM modulation show that OTFS has lower BER than OFDM in a number of situations.

Journal ArticleDOI
TL;DR: How predictions were made from the outset of research in laser based optical communications and how they have evolved to their present form, accurately predicting the performance of coherently detected communication systems are described.
Abstract: In this paper, we review the historical evolution of predictions of the performance of optical communication systems. We will describe how such predictions were made from the outset of research in laser based optical communications and how they have evolved to their present form, accurately predicting the performance of coherently detected communication systems.

Journal ArticleDOI
TL;DR: This review paper highlights recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications and discusses different technical challenges as well as potential techniques to mitigate such degrading effects.
Abstract: There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects.This article is part of the themed issue 'Optical orbital angular momentum'.

Posted Content
TL;DR: This work demonstrates that by borrowing tools from deep learning, it is possible to train detectors that perform well, without any knowledge of the underlying channel models, and shows that deep learning algorithms perform significantly better than a simple detector used in previous works.
Abstract: The design and analysis of communication systems typically rely on the development of mathematical models that describe the underlying communication channel, which dictates the relationship between the transmitted and the received signals. However, in some systems, such as molecular communication systems where chemical signals are used for transfer of information, it is not possible to accurately model this relationship. In these scenarios, because of the lack of mathematical channel models, a completely new approach to design and analysis is required. In this work, we focus on one important aspect of communication systems, the detection algorithms, and demonstrate that by borrowing tools from deep learning, it is possible to train detectors that perform well, without any knowledge of the underlying channel models. We evaluate these algorithms using experimental data that is collected by a chemical communication platform, where the channel model is unknown and difficult to model analytically. We show that deep learning algorithms perform significantly better than a simple detector that was used in previous works, which also did not assume any knowledge of the channel.

Proceedings ArticleDOI
01 Nov 2017
TL;DR: The main contribution of this paper include the introduction of suitable communication architecture, and an overview of different routing protocols for FANETs, which could expand the connectivity and extend the communication range at infrastructure-less area.
Abstract: With recent technological progress in the field of electronics, sensors and communication systems, the production of small UAVs (Unmanned Air Vehicles) became possible, which can be used for several military, commercial and civilian applications However, the capability of a single and small UAV is inadequate Multiple-UAVs can make a system that is beyond the limitations of a single small UAV A Flying Ad hoc Networks (FANETs) is such kind of network that consists of a group of small UAVs connected in ad-hoc manner, which are integrated into a team to achieve high level goals Mobility, lack of central control, self-organizing and ad-hoc nature between the UAVs are the main features of FANETs, which could expand the connectivity and extend the communication range at infrastructure-less area On one hand, in case of catastrophic situations when ordinary communication infrastructure is not available, FANETs can be used to provide a rapidly deployable, flexible, self-configurable and relatively small operating expenses network; the other hand connecting multiple UAVs in ad-hoc network is a big challenge This level of coordination requires an appropriate communication architecture and routing protocols that can be set up on highly dynamic flying nodes in order to establish a reliable and robust communication The main contribution of this paper include the introduction of suitable communication architecture, and an overview of different routing protocols for FANETs The open research issues of existing routing protocols are also investigated in this paper

Journal ArticleDOI
TL;DR: A novel SWIPT-supported power allocation mechanism for D2D communications is showcased to illustrate the importance of the application ofSWIPT.
Abstract: Energy efficiency will play a crucial role in future communication systems and has become a main design target for all 5G radio access networks. The high operational costs and impossibility of replacing or recharging wireless device batteries in multiple scenarios, such as wireless medical sensors inside the human body, call for a new technology by which wireless devices can harvest energy from the environment via capturing ambient RF signals. SWIPT has emerged as a powerful means to address this issue. In this article, we survey the current architectures and enabling technologies for SWIPT and identify technical challenges to implement SWIPT. Following an overview of enabling technologies for SWIPT and SWIPT-assisted wireless systems, we showcase a novel SWIPT-supported power allocation mechanism for D2D communications to illustrate the importance of the application of SWIPT. As an ending note, we point out some future research directions to encourage and motivate more research efforts on SWIPT.

Journal ArticleDOI
TL;DR: The proposed approach utilizes the priority-wise dominance and the entropy approaches for providing solutions to the two problems considered in this paper, namely, Macro Base Station (MBS) decision problem and the cooperative UAV allocation problem.

Journal ArticleDOI
TL;DR: The decoy-state analysis demonstrates that the technique enables a positive secret key generation rate up to 25 km of fiber propagation, and the results build up towards a high-dimensional quantum network composed of free-space and fiber based links.
Abstract: Multiplexing is a strategy to augment the transmission capacity of a communication system. It consists of combining multiple signals over the same data channel and it has been very successful in classical communications. However, the use of enhanced channels has only reached limited practicality in quantum communications (QC) as it requires the manipulation of quantum systems of higher dimensions. Considerable effort is being made towards QC using high-dimensional quantum systems encoded into the transverse momentum of single photons, but so far no approach has been proven to be fully compatible with the existing telecommunication fibers. Here we overcome such a challenge and demonstrate a secure high-dimensional decoy-state quantum key distribution session over a 300-m-long multicore optical fiber. The high-dimensional quantum states are defined in terms of the transverse core modes available for the photon transmission over the fiber, and theoretical analyses show that positive secret key rates can be achieved through metropolitan distances.

Journal ArticleDOI
TL;DR: A pillow robot speech emotion communication system is designed, where the pillow robot acts as a medium for user emotion mapping and the real-time performance of the whole communication process in the scene of a long distance communication between a mother-child users’ pair is analyzed.
Abstract: In today’s increasingly rich material life, people are shifting their focus from the physical world to the spiritual world. In order to identify and care for people’s emotions, human-machine interaction systems have been created. The currently available human-machine interaction systems often support the interaction between human and robot under the line-of-sight (LOS) propagation environment, while most communications in terms of human-to-human and human-to-machine are non-LOS (NLOS). In order to break the limitation of the traditional human–machine interaction system, we propose the emotion communication system based on NLOS mode. Specifically, we first define the emotion as a kind of multimedia which is similar to voice and video. The information of emotion can not only be recognized, but can also be transmitted over a long distance. Then, considering the real-time requirement of the communications between the involved parties, we propose an emotion communication protocol, which provides a reliable support for the realization of emotion communications. We design a pillow robot speech emotion communication system, where the pillow robot acts as a medium for user emotion mapping. Finally, we analyze the real-time performance of the whole communication process in the scene of a long distance communication between a mother-child users’ pair, to evaluate the feasibility and effectiveness of emotion communications.

Journal ArticleDOI
TL;DR: A comprehensive survey on the history and applications of Faster-than-Nyquist (FTN) signaling and the basic principles and the system framework of FTN signaling are presented.
Abstract: Faster-than-Nyquist (FTN) signaling can improve the bandwidth utilization. In this paper, we will provide a comprehensive survey on the topic. The history and the applications of FTN signaling are first introduced. Then, the basic principles and the system framework of FTN signaling are presented. Next, more details on transmitter and receiver optimization are discussed. Finally, the current research challenges on FTN signaling are identified and conclusions are provided.

Proceedings ArticleDOI
01 Dec 2017
TL;DR: In this article, the authors proposed an iterative algorithm to solve the problem efficiently, based on the block coordinate descent and successive convex optimization methods, where the UAV's transmit power and trajectory are each optimized with the other fixed in an alternating manner until convergence.
Abstract: Unmanned aerial vehicle (UAV) communications has drawn significant interest recently due to many advantages such as low cost, high mobility, and on-demand deployment. This paper addresses the issue of physical-layer security in a UAV communication system, where a UAV sends confidential information to a legitimate receiver in the presence of a potential eavesdropper which are both on the ground. We aim to maximize the secrecy rate of the system by jointly optimizing the UAV's trajectory and transmit power over a finite horizon. In contrast to the existing literature on wireless security with static nodes, we exploit the mobility of the UAV in this paper to enhance the secrecy rate via a new trajectory design. Although the formulated problem is non-convex and challenging to solve, we propose an iterative algorithm to solve the problem efficiently, based on the block coordinate descent and successive convex optimization methods. Specifically, the UAV's transmit power and trajectory are each optimized with the other fixed in an alternating manner until convergence. Numerical results show that the proposed algorithm significantly improves the secrecy rate of the UAV communication system, as compared to benchmark schemes without transmit power control or trajectory optimization.

Proceedings ArticleDOI
04 Oct 2017
TL;DR: This paper effectively synthesizes off-the-shelf optical components into a sub- mW low power visible light passive transmitter along with a retroreflecting uplink design dedicated for power constrained mobile/IoT devices, and design, implement and evaluate PassiveVLC, a novel visible light backscatter communication system.
Abstract: This paper investigates the feasibility of practical backscatter communication using visible light for battery-free IoT applications. Based on the idea of modulating the light retroreflection with a commercial LCD shutter, we effectively synthesize these off-the-shelf optical components into a sub- mW low power visible light passive transmitter along with a retroreflecting uplink design dedicated for power constrained mobile/IoT devices. On top of that, we design, implement and evaluate PassiveVLC, a novel visible light backscatter communication system. PassiveVLC system enables a battery-free tag device to perform passive communication with the illuminating LEDs over the same light carrier and thus offers several favorable features including battery-free, sniff-proof, and biologically friendly for human-centric use cases. Experimental results from our prototyped system show that PassiveVLC is flexible with tag orientation, robust to ambient lighting conditions, and can achieve up to 1 kbps uplink speed. Link budget analysis and two proof-of-concept applications are developed to demonstrate PassiveVLC's efficacy and practicality.

Journal ArticleDOI
TL;DR: The aim is to maximize the sum rate and energy efficiency under ULU achievable information throughput constraints by jointly optimizing beamforming and time allocation and to improve the objectives with convergence guaranteed.
Abstract: A communication system is considered consisting of a full-duplex multiple-antenna base station (BS) and multiple single-antenna downlink users (DLUs) and single-antenna uplink users (ULUs), where the latter need to harvest energy for transmitting information to the BS. The communication is thus divided into two phases. In the first phase, the BS uses all available antennas for conveying information to DLUs and wireless energy to ULUs via information and energy beamforming, respectively. In the second phase, ULUs send their independent information to the BS using their harvested energy while the BS transmits the information to the DLUs. In both the phases, the communication is operated at the same time and over the same frequency band. The aim is to maximize the sum rate and energy efficiency under ULU achievable information throughput constraints by jointly optimizing beamforming and time allocation. The utility functions of interest are nonconcave and the involved constraints are nonconvex, so these problems are computationally troublesome. To address them, path-following algorithms are proposed to arrive at least at local optima. The proposed algorithms iteratively improve the objectives with convergence guaranteed. Simulation results demonstrate that they achieve rapid convergence and outperform conventional solutions.