scispace - formally typeset
Search or ask a question

Showing papers on "Conformational change published in 2019"


Journal ArticleDOI
01 Mar 2019-Nature
TL;DR: Cryo-electron microscopy structures of full-length STING show that cyclic GMP–AMP induces a half-turn rotation of the ligand-binding domain relative to the transmembrane domain, forming a tetramer and higher-order oligomers for signalling.
Abstract: Infections by pathogens that contain DNA trigger the production of type-I interferons and inflammatory cytokines through cyclic GMP–AMP synthase, which produces 2′3′-cyclic GMP–AMP (cGAMP) that binds to and activates stimulator of interferon genes (STING; also known as TMEM173, MITA, ERIS and MPYS)1–8. STING is an endoplasmic-reticulum membrane protein that contains four transmembrane helices followed by a cytoplasmic ligand-binding and signalling domain9–13. The cytoplasmic domain of STING forms a dimer, which undergoes a conformational change upon binding to cGAMP9,14. However, it remains unclear how this conformational change leads to STING activation. Here we present cryo-electron microscopy structures of full-length STING from human and chicken in the inactive dimeric state (about 80 kDa in size), as well as cGAMP-bound chicken STING in both the dimeric and tetrameric states. The structures show that the transmembrane and cytoplasmic regions interact to form an integrated, domain-swapped dimeric assembly. Closure of the ligand-binding domain, induced by cGAMP, leads to a 180° rotation of the ligand-binding domain relative to the transmembrane domain. This rotation is coupled to a conformational change in a loop on the side of the ligand-binding-domain dimer, which leads to the formation of the STING tetramer and higher-order oligomers through side-by-side packing. This model of STING oligomerization and activation is supported by our structure-based mutational analyses. Cryo-electron microscopy structures of full-length STING show that cyclic GMP–AMP induces a half-turn rotation of the ligand-binding domain relative to the transmembrane domain, forming a tetramer and higher-order oligomers for signalling.

296 citations


Journal ArticleDOI
10 Jan 2019-Nature
TL;DR: It is shown that rotation about covalent bonds in a peptide linker can change a flexible MOF to afford nine distinct crystal structures, revealing a conformational energy landscape that is characterized by multiple structural minima.
Abstract: Metal–organic frameworks (MOFs) are crystalline synthetic porous materials formed by binding organic linkers to metal nodes: they can be either rigid1,2 or flexible3. Zeolites and rigid MOFs have widespread applications in sorption, separation and catalysis that arise from their ability to control the arrangement and chemistry of guest molecules in their pores via the shape and functionality of their internal surface, defined by their chemistry and structure4,5. Their structures correspond to an energy landscape with a single, albeit highly functional, energy minimum. By contrast, proteins function by navigating between multiple metastable structures using bond rotations of the polypeptide6,7, where each structure lies in one of the minima of a conformational energy landscape and can be selected according to the chemistry of the molecules that interact with the protein. These structural changes are realized through the mechanisms of conformational selection (where a higher-energy minimum characteristic of the protein is stabilized by small-molecule binding) and induced fit (where a small molecule imposes a structure on the protein that is not a minimum in the absence of that molecule)8. Here we show that rotation about covalent bonds in a peptide linker can change a flexible MOF to afford nine distinct crystal structures, revealing a conformational energy landscape that is characterized by multiple structural minima. The uptake of small-molecule guests by the MOF can be chemically triggered by inducing peptide conformational change. This change transforms the material from a minimum on the landscape that is inactive for guest sorption to an active one. Chemical control of the conformation of a flexible organic linker offers a route to modifying the pore geometry and internal surface chemistry and thus the function of open-framework materials.

182 citations


Journal ArticleDOI
TL;DR: The cryo-EM structure of full-length IGF1R–IGF1 complex in the active state is determined, providing insights into how IGF1 triggers receptor activation and identifies a source of the negative cooperativity in IGF1 binding to IGF1 R.
Abstract: Type 1 insulin-like growth factor receptor (IGF1R) is a receptor tyrosine kinase that regulates cell growth and proliferation, and can be activated by IGF1, IGF2, and insulin. Here, we report the cryo-EM structure of full-length IGF1R-IGF1 complex in the active state. This structure reveals that only one IGF1 molecule binds the Γ-shaped asymmetric IGF1R dimer. The IGF1-binding site is formed by the L1 and CR domains of one IGF1R protomer and the α-CT and FnIII-1 domains of the other. The liganded α-CT forms a rigid beam-like structure with the unliganded α-CT, which hinders the conformational change of the unliganded α-CT required for binding of a second IGF1 molecule. We further identify an L1-FnIII-2 interaction that mediates the dimerization of membrane-proximal domains of IGF1R. This interaction is required for optimal receptor activation. Our study identifies a source of the negative cooperativity in IGF1 binding to IGF1R and reveals the structural basis of IGF1R activation.

104 citations


Journal ArticleDOI
TL;DR: Experimental results are presented which show that the phosphodianion-binding energy of phosphate monoester substrates is used to drive conversion of their protein catalysts from flexible and entropically rich ground states to stiff and catalytically active Michaelis complexes.
Abstract: The enormous rate accelerations observed for many enzyme catalysts are due to strong stabilizing interactions between the protein and reaction transition state. The defining property of these catalysts is their specificity for binding the transition state with a much higher affinity than substrate. Experimental results are presented which show that the phosphodianion-binding energy of phosphate monoester substrates is used to drive conversion of their protein catalysts from flexible and entropically rich ground states to stiff and catalytically active Michaelis complexes. These results are generalized to other enzyme-catalyzed reactions. The existence of many enzymes in flexible, entropically rich, and inactive ground states provides a mechanism for utilization of ligand-binding energy to mold these catalysts into stiff and active forms. This reduces the substrate-binding energy expressed at the Michaelis complex, while enabling the full and specific expression of large transition-state binding energies. Evidence is presented that the complexity of enzyme conformational changes increases with increases in the enzymatic rate acceleration. The requirement that a large fraction of the total substrate-binding energy be utilized to drive conformational changes of floppy enzymes is proposed to favor the selection and evolution of protein folds with multiple flexible unstructured loops, such as the TIM-barrel fold. The effect of protein motions on the kinetic parameters for enzymes that undergo ligand-driven conformational changes is considered. The results of computational studies to model the complex ligand-driven conformational change in catalysis by triosephosphate isomerase are presented.

87 citations


Journal ArticleDOI
TL;DR: This is the first example of a Class I PI3K inhibitor achieving its selectivity by affecting the DFG motif in a manner that bears similarity to DFG in/out for type II protein kinase inhibitors.
Abstract: We have discovered a class of PI3Kγ inhibitors exhibiting over 1,000-fold selectivity over PI3Kα and PI3Kβ. On the basis of X-ray crystallography, hydrogen-deuterium exchange-mass spectrometry and surface plasmon resonance experiments we propose that the cyclopropylethyl moiety displaces the DFG motif of the enzyme away from the adenosine tri-phosphate binding site, inducing a large conformational change in both the kinase- and helical domains of PI3Kγ. Site directed mutagenesis explained how the conformational changes occur. Our results suggest that these cyclopropylethyl substituted compounds selectively inhibit the active state of PI3Kγ, which is unique to these compounds and to the PI3Kγ isoform, explaining their excellent potency and unmatched isoform selectivity that were confirmed in cellular systems. This is the first example of a Class I PI3K inhibitor achieving its selectivity by affecting the DFG motif in a manner that bears similarity to DFG in/out for type II protein kinase inhibitors.

42 citations


Journal ArticleDOI
TL;DR: This small molecule SHP2 inhibitor has a potential to serve as a lead compound for further optimization studies to develop novel anti-SHP2 therapeutic agents.
Abstract: Genetic mutations in the phosphatase PTPN11 (SHP2) are associated with childhood leukemias. These mutations cause hyperactivation of SHP2 due to the disruption of the autoinhibitory conformation. By targeting the activation-associated protein conformational change, we have identified an SHP2 inhibitor (E)-1-(1-(5-(3-(2,4-dichlorophenyl)acryloyl)-2-ethoxy-4-hydroxybenzyl)-1,2,5,6-tetrahydropyridin-3-yl)-1H-benzo[d]imidazol-2(3H)-one (LY6, 1) using computer-aided drug design database screening combined with cell-based assays. This compound inhibited SHP2 with an IC50 value of 9.8 μM, 7-fold more selective for SHP2 than the highly related SHP1. Fluorescence titration, thermal shift, and microscale thermophoresis quantitative binding assays confirmed its direct binding to SHP2. This compound was further verified to effectively inhibit SHP2-mediated cell signaling and proliferation. Furthermore, mouse and patient leukemia cells with PTPN11 activating mutations were more sensitive to this inhibitor than wild-ty...

38 citations


Journal ArticleDOI
TL;DR: It is revealed that the rates of binding of any of these substrates decreased with increasing substrate concentration, a hallmark of conformational selection, and when the concentration of 17α-OH pregnenolone was held constant and the P450 concentration increased, the binding rate increased, and such opposite patterns are also diagnostic of conformatory selection.

31 citations


Journal ArticleDOI
TL;DR: Molecular dynamics simulations used to study the global dynamics and conformational transitions of γ-secretase, as well as the water and lipid distributions in and around the transmembrane domains in atomic detail revealed global motions compatible with the experimental enzyme structures and indicated little dependence of the dynamics of the trans Membrane domain on the soluble extracellular subunits.
Abstract: γ-secretase, an intramembrane-cleaving aspartyl protease is involved in the cleavage of a large number of intramembrane proteins. The most prominent substrate is the amyloid precursor protein, whose proteolytic processing leads to the production of different amyloid Aβ peptides. These peptides are known to form toxic aggregates and may play a key role in Alzheimer’s disease (AD). Recently, the three-dimensional structure of γ-secretase has been determined via Cryo-EM, elucidating the spatial geometry of this enzyme complex in different functional states. We have used molecular dynamics (MD) simulations to study the global dynamics and conformational transitions of γ-secretase, as well as the water and lipid distributions in and around the transmembrane domains in atomic detail. Simulations were performed on the full enzyme complex and on the membrane embedded parts alone. The simulations revealed global motions compatible with the experimental enzyme structures and indicated little dependence of the dynamics of the transmembrane domains on the soluble extracellular subunits. During the simulation on the membrane spanning part a transition between an inactive conformation (with catalytic residues far apart) towards a putatively active form (with catalytic residues in close proximity) has been observed. This conformational change is associated with a distinct rearrangement of transmembrane helices, a global compaction of the catalytically active presenilin subunit a change in the water structure near the active site and a rigidification of the protein fold. The observed conformational rearrangement allows the interpretation of the effect of several mutations on the activity of γ-secretase. A number of long-lived lipid binding sites could be identified on the membrane spanning surface of γ-secretase which may coincide with association regions of hydrophobic membrane helices to form putative substrate binding exosites.

29 citations


Journal ArticleDOI
TL;DR: The intermediate conformation of the murine coronavirus fusion protein, called the spike protein, which must be cleaved by a cellular protease following receptor binding is examined, and an asymmetric trimer model for the intermediate structure of the spikeprotein is proposed.
Abstract: A fusion protein expressed on the surface of enveloped viruses mediates fusion of the viral and cellular membranes to facilitate virus infection. Pre- and postfusion structures of viral fusion proteins have been characterized, but conformational changes between them remain poorly understood. Here, we examined the intermediate conformation of the murine coronavirus fusion protein, called the spike protein, which must be cleaved by a cellular protease following receptor binding. Western blot analysis of protease digestion products revealed that two subunits (67 and 69 kDa) are produced from a single spike protein (180 kDa). These two subunits were considered to be by-products derived from conformational changes and were useful for probing the intermediate conformation of the spike protein. Interaction with a heptad repeat (HR) peptide revealed that these subunits adopt packed and unpacked conformations, respectively, and two-dimensional electrophoresis revealed a trimeric assembly. Based on biochemical observations, we propose an asymmetric trimer model for the intermediate structure of the spike protein. Receptor binding induces the membrane-binding potential of the trimer, in which at least one HR motif forms a packed-hairpin structure, while membrane fusion subunits are covered by the receptor-binding subunit, thereby preventing the spike protein from forming the typical homotrimeric prehairpin structure predicted by the current model of class I viral fusion protein. Subsequent proteolysis induces simultaneous packing of the remaining unpacked HRs upon assembly of three HRs at the central axis to generate a six-helix bundle. Our model proposes a key mechanism for membrane fusion of enveloped viruses.IMPORTANCE Recent studies using single-particle cryo-electron microscopy (cryoEM) revealed the mechanism underlying activation of viral fusion protein at the priming stage. However, characterizing the subsequent triggering stage underpinning transition from pre- to postfusion structures is difficult because single-particle cryoEM excludes unstable structures that appear as heterogeneous shapes. Therefore, population-based biochemical analysis is needed to capture features of unstable proteins. Here, we analyzed protease digestion products of a coronavirus fusion protein during activation; their sizes appear to be affected directly by the conformational state. We propose a model for the viral fusion protein in the intermediate state, which involves a compact structure and conformational changes that overcome steric hindrance within the three fusion protein subunits.

26 citations


Journal ArticleDOI
TL;DR: The structural deviations, fluctuations, torsional angles and the affinity of the ion are explored at different salt concentrations and it is found that the conformation of TBA-G-quadruplex at 0 mM and 50’mM salt concentrations, is very much different than the other salt concentrations.

25 citations


Journal ArticleDOI
TL;DR: Novel donor–acceptor (D–A) type (monomer) and twin D–A type (dimer) molecules with pretwisted geometrical conformations have been synthesized to investigate the molecular conformation-dependent mec…
Abstract: Novel donor–acceptor (D–A) type (monomer) and twin D–A type (dimer) molecules with pretwisted geometrical conformations have been synthesized to investigate the molecular conformation-dependent mec...

Journal ArticleDOI
TL;DR: This study provides a dual mechanism for fibulin-4 in 1) inducing a stable conformational and functional change in LTBP-4L, and 2) promoting deposition of tropoelastin onto the elongatedLTBP- 4L.
Abstract: Elastogenesis is a hierarchical process by which cells form functional elastic fibers, providing elasticity and the ability to regulate growth factor bioavailability in tissues, including blood vessels, lung, and skin. This process requires accessory proteins, including fibulin-4 and -5, and latent TGF binding protein (LTBP)-4. Our data demonstrate mechanisms in elastogenesis, focusing on the interaction and functional interdependence between fibulin-4 and LTBP-4L and its impact on matrix deposition and function. We show that LTBP-4L is not secreted in the expected extended structure based on its domain composition, but instead adopts a compact conformation. Interaction with fibulin-4 surprisingly induced a conformational switch from the compact to an elongated LTBP-4L structure. This conversion was only induced by fibulin-4 multimers associated with increased avidity for LTBP-4L; fibulin-4 monomers were inactive. The fibulin-4-induced conformational change caused functional consequences in LTBP-4L in terms of binding to other elastogenic proteins, including fibronectin and fibrillin-1, and of LTBP-4L assembly. A transient exposure of LTBP-4L with fibulin-4 was sufficient to stably induce conformational and functional changes; a stable complex was not required. These data define fibulin-4 as a molecular extracellular chaperone for LTBP-4L. The altered LTBP-4L conformation also promoted elastogenesis, but only in the presence of fibulin-4, which is required to escort tropoelastin onto the extended LTBP-4L molecule. Altogether, this study provides a dual mechanism for fibulin-4 in 1) inducing a stable conformational and functional change in LTBP-4L, and 2) promoting deposition of tropoelastin onto the elongated LTBP-4L.

Journal ArticleDOI
TL;DR: To develop mass spectrometry for mapping protein-binding sites, a new carboxyl group footprinter, benzhydrazide, was implemented and refined with isotope encoding, validating a new reagent that is more reactive and discriminating for specific amino-acid protein footprinting.
Abstract: Metal ions, usually bound by various amino-acid side chains in proteins, play multiple roles in protein folding, conformational change, cellular communication, and catalysis. Ca(II) and Mg(II), abundant among biologically relevant cations, execute their cellular functions associated with the conformational change of bound proteins. They bind with proteins where carboxylic acid residues are dominant ligands. To develop mass spectrometry for mapping protein-binding sites, we implemented a new carboxyl group footprinter, benzhydrazide, and refined it with isotope encoding. The method uses carbodiimide chemistry to footprint carboxylic residues, whereby 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide activates a carboxyl group followed by nucleophilic attack by benzhydrazide forming a stable labeled product. We tested the effectiveness of isotope-encoded benzhydrazide by studying Ca2+ and Mg2+ binding of calmodulin, an EF-hand protein. The footprinting results indicate that the four active sites for metal-ion...

Journal ArticleDOI
TL;DR: A fluorescence-based single-molecule assay and data analysis procedure that allows the simultaneous real-time observation of ligand binding and conformational changes in FeuA reveals that ligandbinding shifts the conformational equilibrium of FeuB from an open to a closed conformation.

Journal ArticleDOI
TL;DR: Interligand hydrogen bonding played a crucial role in directing the formation of a C4 symmetric cage among different possible isomers, as suggested by DFT studies, and control experiments with different ligands.
Abstract: We report about the coordination-driven self-assembly of a chiral bis-pyridyl ligand (1), synthesized from steroidal cholic acid, with Pd(II) ions to form a chiral metal–organic Pd2(1)4 cage. The s...

Journal ArticleDOI
21 Feb 2019-eLife
TL;DR: Comparison of nucleotide-binding with ionic currents suggests a model in which each nucleotide binding event to NBS2 of SUR1 is independent and promotes KATP activation by the same amount.
Abstract: The response of ATP-sensitive K+ channels (KATP) to cellular metabolism is coordinated by three classes of nucleotide binding site (NBS). We used a novel approach involving labeling of intact channels in a native, membrane environment with a non-canonical fluorescent amino acid and measurement (using FRET with fluorescent nucleotides) of steady-state and time-resolved nucleotide binding to dissect the role of NBS2 of the accessory SUR1 subunit of KATP in channel gating. Binding to NBS2 was Mg2+-independent, but Mg2+ was required to trigger a conformational change in SUR1. Mutation of a lysine (K1384A) in NBS2 that coordinates bound nucleotides increased the EC50 for trinitrophenyl-ADP binding to NBS2, but only in the presence of Mg2+, indicating that this mutation disrupts the ligand-induced conformational change. Comparison of nucleotide-binding with ionic currents suggests a model in which each nucleotide binding event to NBS2 of SUR1 is independent and promotes KATP activation by the same amount.

Journal ArticleDOI
TL;DR: This work investigates a dipeptide whose two carbonyl oxygen atoms were replaced by sulfur, red-shifting the strong lowest-lying ππ* transitions into the more accessible 250-370 nm spectral window.
Abstract: The far-UV spectral window widely used for the conformational analysis of biomolecules is not easily covered with broad-band lasers. This has made it difficult to use circular dichroism (CD) spectroscopy to directly follow fast structure changes. By combining transient CD spectroscopy in the deep-UV with thioamide substitution, we demonstrate a method to overcome this difficulty. We investigated a dipeptide whose two carbonyl oxygen atoms were replaced by sulfur, red-shifting the strong lowest-lying ππ* transitions into the more accessible 250–370 nm spectral window. Coupling of the two thioamide units cannot be resolved by achiral 2D-UV spectroscopy, but it gives rise to a pronounced bisignate CD spectrum. The transient CD spectra reveal weakening of this coupling in the electronically excited state, where conformational constraints are released. Our results show that direct local probing of fast backbone conformational change via CD spectroscopy is possible in combination with site-selective thio substi...

Journal ArticleDOI
TL;DR: 2D-COS results indicate that the increase in the amount of adsorbed BSA occurs prior to the loss in the BSA helical structure in the initial stage of adsOrption processes, whereas an opposite sequence of the changes to BSA conformation and surface coverage is observed during the refolding processes.
Abstract: Adsorption kinetics and conformational changes of a model protein, bovine serum albumin (BSA, 0.1, 0.5, or 1.0 g/L), on the surface of hematite (α-Fe2O3) particles in 39 ± 9, 68 ± 9, and 103 ± 8 nm...

Journal ArticleDOI
TL;DR: The crystal structure of the Cdc42-bound form of the DOCK7 DHR-2 domain showing dual specificity for Rac1 and CDC42 is reported and the results suggest that lobe B acts as a sensor for identifying different switch 1 conformations and explain how Dock7 recognizes both Rac 1 and Cdc41.

Journal ArticleDOI
TL;DR: In this paper, the 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) from Deinococcus radiodurans (DrDXPS), which is a bi-substrate enzyme, was investigated.

Journal ArticleDOI
TL;DR: This work shows that R126A can generate a significant perturbation on structural stability of A-FABP, which implies that R 126 is of significance in inhibitor bindings, and can provide a theoretical guidance for design of potent inhibitors targeting A- FABP.
Abstract: Adipocyte fatty acid binding protein (A-FABP) is a potential drug target for treatment of diabetes, obesity and atherosclerosis. Molecular dynamics (MD) simulations, principal component (PC) analysis and binding free energy calculations were combined to probe effect of electrostatic interactions of residues R78, R106 and R126 with inhibitors ZGB, ZGC and IBP on structural stability of three inhibitor/A-FABP complexes. The results indicate that mutation R126A produces significant influence on polar interactions of three inhibitors with A-FABP and these interactions are main force for driving the conformational change of A-FABP. Analyses on hydrogen bond interactions show that the decrease in hydrogen bonding interactions of residues R126 and Y128 with three inhibitors and the increase in that of K58 with inhibitors ZGC and IBP in the R126A mutated systems mostly regulate the conformational changes of A-FABP. This work shows that R126A can generate a significant perturbation on structural stability of A-FABP, which implies that R126 is of significance in inhibitor bindings. We expect that this study can provide a theoretical guidance for design of potent inhibitors targeting A-FABP. Communicated by Ramaswamy H. Sarma.

Journal ArticleDOI
TL;DR: This work examined effects of ATP on the conformational change and thermodynamic stability of protomer dimer of Aβ42 pentamer and tetramer by employing all-atom molecular dynamics simulations and observed interprotomer twisting and intraprotomer peeling of A β42(9).
Abstract: Adenosine triphosphate (ATP) is newly expected to be involved in the clearance of amyloid β 1-42 (Aβ42) fibril and its precursors, Aβ42 oligomer. Meanwhile, the microscopic mechanism of the role in dissolving the protein aggregate still remains elusive. Aiming to elucidate the mechanism, we examined effects of ATP on the conformational change and thermodynamic stability of the protomer dimer of Aβ42 pentamer and tetramer, Aβ42(9), by employing all-atom molecular dynamics simulations. We observed interprotomer twisting and intraprotomer peeling of Aβ42(9). These conformational changes remarkably accelerate dissociation of the protomer dimer. However, the presence of ATP itself has no positive effect on dissociation processes of the protomer dimer and a monomer from the dimer, indicating its irrelevance to decomposition of the Aβ42 oligomer. Rather, it could be supposed that ATP prevents additional binding and rebinding of Aβ42 monomers to the Aβ42 oligomer and it then converts Aβ42 oligomer into an off-pathway species which is excluded from Aβ42 fibril growth processes. Interestingly, hydrophobic adenosine in ATP makes contact with Aβ42(9) on its backbone atoms, with respect to both Aβ42 monomers on the edge of Aβ42(9) and dissociated Aβ42 monomers in Aβ42(9). These roles of ATP would be applied without regard to the structural polymorphism of the Aβ42 fibril.

Journal ArticleDOI
23 Oct 2019
TL;DR: The structure of the catalytically inactive S679A mutant of Escherichia coli LonA protease (EcLon) has been determined by cryo-EM at the resolution of 3.5 A.
Abstract: Energy-dependent Lon proteases play a key role in cellular regulation by degrading short-lived regulatory proteins and misfolded proteins in the cell. The structure of the catalytically inactive S679A mutant of Escherichia coli LonA protease (EcLon) has been determined by cryo-EM at the resolution of 3.5 A. EcLonA without a bound substrate adopts a hexameric open-spiral quaternary structure that might represent the resting state of the enzyme. Upon interaction with substrate the open-spiral hexamer undergoes a major conformational change resulting in a compact, closed-circle hexamer as in the recent structure of a complex of Yersinia pestis LonA with a protein substrate. This major change is accomplished by the rigid-body rearrangement of the individual domains within the protomers of the complex around the hinge points in the interdomain linkers. Comparison of substrate-free and substrate-bound Lon structures allows to mark the location of putative pivotal points involved in such conformational changes.

Journal ArticleDOI
TL;DR: For the first time, it is observed that the conformational change of protein corona could induce proteins to aggregate.

Journal ArticleDOI
TL;DR: The present study will help understand the binding mechanism of lipopeptide biosurfactant (PF) to proteins as well as the associated stability and conformational changes.

Journal ArticleDOI
TL;DR: The C-terminal cysteine-rich motif of NYE1/SGR1 affects chlorophyll degradation likely by mediating its self-interaction and conformational change, and somehow altering its Mg-dechelating activity in response to the changing redox potential.
Abstract: The C-terminal cysteine-rich motif of NYE1/SGR1 affects chlorophyll degradation likely by mediating its self-interaction and conformational change, and somehow altering its Mg-dechelating activity in response to the changing redox potential. During green organ senescence in plants, the most prominent phenomenon is the degreening caused by net chlorophyll (Chl) loss. NON-YELLOWING1/STAY-GREEN1 (NYE1/SGR1) was recently reported to be able to dechelates magnesium (Mg) from Chl a to initiate its degradation, but little is known about the domain/motif basis of its functionality. In this study, we carried out a protein truncation assay and identified a conserved cysteine-rich motif (CRM, P-X3-C-X3-C-X-C2-F-P-X5-P) at its C terminus, which is essential for its function. Genetic analysis showed that all four cysteines in the CRM were irreplaceable, and enzymatic assays demonstrated that the mutation of each of the four cysteines affected its Mg-dechelating activity. The CRM plays a critical role in the conformational change and self-interaction of NYE1 via the formation of inter- and intra-molecular disulfide bonds. Our results may provide insight into how NYE1 responds to rapid redox changes during leaf senescence and in response to various environmental stresses.

Journal ArticleDOI
TL;DR: Findings indicate that PA regulates Sec18 function by altering its architecture and stabilizing membrane-bound Sec18 protomers, which is distinct from the conformational changes that occur in hexameric Sec18 during SNARE priming.

Journal ArticleDOI
10 Jul 2019-eLife
TL;DR: Conformational changes within heavy chain of membrane-bound immunoglobulin (mIg), as well as conformational changes in the spatial relationship between mIg and Igβ were observed, and were correlated with the strength of BCR activation and were distinct in IgM- and IgG-BCR.
Abstract: B lymphocytes use B cell receptors (BCRs) to recognize antigens It is still not clear how BCR transduces antigen-specific physical signals upon binding across cell membrane for the conversion to chemical signals, triggering downstream signaling cascades It is hypothesized that through a series of conformational changes within BCR, antigen engagement in the extracellular domain of BCR is transduced to its intracellular domain By combining site-specific labeling methodology and FRET-based assay, we monitored conformational changes in the extracellular domains within BCR upon antigen engagement Conformational changes within heavy chain of membrane-bound immunoglobulin (mIg), as well as conformational changes in the spatial relationship between mIg and Igβ were observed These conformational changes were correlated with the strength of BCR activation and were distinct in IgM- and IgG-BCR These findings provide molecular mechanisms to explain the fundamental aspects of BCR activation and a framework to investigate ligand-induced molecular events in immune receptors

Journal ArticleDOI
TL;DR: The results indicate that pH modulates the protonation state of αHis323, revealed to feature pKa = 6.6, and consequently the conformation of the mobile flap, and two additional residues (αAsp224 and αArg339) are shown to be key factors for the conformational change.
Abstract: Urease uses a cluster of two NiII ions to activate a water molecule for urea hydrolysis. The key to this unsurpassed enzyme is a change in the conformation of a flexible structural motif, the mobile flap, which must be able to move from an open to a closed conformation to stabilize the chelating interaction of urea with the NiII cluster. This conformational change brings the imidazole side chain functionality of a critical histidine residue, αHis323, in close proximity to the site that holds the transition state structure of the reaction, facilitating its evolution to the products. Herein, we describe the influence of the solution pH in modulating the conformation of the mobile flap. High-resolution crystal structures of urease inhibited in the presence of N-(n-butyl)phosphoric triamide (NBPTO) at pH 6.5 and pH 7.5 are described and compared to the analogous structure obtained at pH 7.0. The kinetics of urease in the absence and presence of NBPTO are investigated by a calorimetric assay in the pH 6.0-8.0 range. The results indicate that pH modulates the protonation state of αHis323, which was revealed to have pKa =6.6, and consequently the conformation of the mobile flap. Two additional residues (αAsp224 and αArg339) are shown to be key factors for the conformational change. The role of pH in modulating the catalysis of urea hydrolysis is clarified through the molecular and structural details of the interplay between protein conformation and solution acidity in the paradigmatic case of a metalloenzyme.

Journal ArticleDOI
TL;DR: An essential role of the stalk is demonstrated in regulating motor activity and coupling conformational changes across the two halves of the AAA ring.
Abstract: The movement of a molecular motor protein along a cytoskeletal track requires communication between enzymatic, polymer-binding, and mechanical elements. Such communication is particularly complex and not well understood in the dynein motor, an ATPase that is comprised of a ring of six AAA domains, a large mechanical element (linker) spanning over the ring, and a microtubule-binding domain (MTBD) that is separated from the AAA ring by a ~ 135 A coiled-coil stalk. We identified mutations in the stalk that disrupt directional motion, have microtubule-independent hyperactive ATPase activity, and nucleotide-independent low affinity for microtubules. Cryo-electron microscopy structures of a mutant that uncouples ATPase activity from directional movement reveal that nucleotide-dependent conformational changes occur normally in one-half of the AAA ring, but are disrupted in the other half. The large-scale linker conformational change observed in the wild-type protein is also inhibited, revealing that this conformational change is not required for ATP hydrolysis. These results demonstrate an essential role of the stalk in regulating motor activity and coupling conformational changes across the two halves of the AAA ring.